
POSTER 2014, PRAGUE MAY 15 1

COCOpf: An Algorithm Portfolio Framework

Petr Baudiš

Dept. of Cybernetics, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic

pasky@ucw.cz

Abstract. Algorithm portfolios represent a strategy of com-
posing multiple heuristic algorithms, each suited to a dif-
ferent class of problems, within a single general solver that
will choose the best suited algorithm for each input. This
approach recently gained popularity especially for solving
combinatoric problems, but optimization applications are
still emerging. The COCO platform [6] [5] of the BBOB
workshop series is the current standard way to measure per-
formance of continuous black-box optimization algorithms.

As an extension to the COCO platform, we present the
Python-based COCOpf framework that allows composing
portfolios of optimization algorithms and running experi-
ments with different selection strategies. In our framework,
we focus on black-box algorithm portfolio and online adap-
tive selection. As a demonstration, we measure the perfor-
mance of stock SciPy [8] optimization algorithms and the
popular CMA algorithm [4] alone and in a portfolio with
two simple selection strategies. We confirm that even a naive
selection strategy can provide improved performance across
problem classes.

Keywords
Algorithm portfolio, continuous black-box optimiza-
tion, hyperheuristics, software engineering.

1. Introduction
The problem of Algorithm Selection is not new [16],

but has only recently gained traction in particular in the field
of combinatoric problem solvers. [9] There are multiple
ways to approach the issue, in our work we adopt the ab-
straction of algorithm portfolios. [3] The basic idea is that
we have a set of heuristic algorithms at our disposal (each
suitable for a different class of problem instances), and for
each problem instance on input, we apply a selection strat-
egy to pick an algorithm from this portfolio and apply it on
the problem. We can perform the selection once or along
a fixed schedule (offline selection) based on features of the
problem instance, or in multiple rounds first exploring the
suitability of portfolio members, then allocating time to them
based on their previous performance. In successive rounds,

algorithms can be either resumed from their previous state or
restarted; we take the approach of resuming them, reserving
the restart schedule to be an internal matter of each algo-
rithm.1

Applying algorithm portfolios on continuous black-box
optimization is still a fresh area of research.2 The main re-
sults so far lie either in population methods, combining a va-
riety of genetic algorithms together, e.g. the AMALGAM-
SO algorithm [17], or in offline methods based chiefly on
exploratory landscape analysis [11].

In our work, we aim to allow the more traditional opti-
mization methods to enter the mix as we regard the algo-
rithms as black-box, i.e. we completely avoid modifying
their inner working and we simply call them to retrieve a sin-
gle result. This allows state-of-art methods to be combined
in a single portfolio easily and offers easy implementation of
whatever selection strategy desired as the existing algorithm
modules can be simply reused without modification. Fur-
thermore, we focus on online adaptive selection that selects
algorithms based on their performance so far and does not
require possibly expensive feature extraction and training.

The currently accepted de-facto standard for bench-
marking optimization methods is the COmparing Continu-
ous Optimisers COCO platform [6] [5] that was originally
developed for the BBOB workshop series. It provides the
infrastructure, glue code for both running experiments and
preparing high quality figures, a set of common reference
results and the code for a set of benchmark functions. There-
fore, we chose to add algorithm portfolio support to this plat-
form. The glue code is available in multiple languages, we
extended the Python implementation. We are in part mo-
tivated by the convenient availability of optimization algo-
rithms distributed along the popular SciPy library [8].

We have two options when testing algorithm selection
methods in practice: either using only previously published
data on preformance of individual algorithms, or re-running
optimization algorithms from scratch under the guide of a
particular selection method. The former approach is cer-
tainly an easier option while benchmarking, nevertheless we

1That is, sometimes resumption will simply continue the algorithm to
a next iteration, on reaching a local optimum the algorithm may attempt to
escape it and failing that, a complete restart may occur.

2Especially if we do not consider applying related methods to individual
operator selection within genetic algorithms used for optimization.



2 P. BAUDIŠ, COCOpf Algorithm Portfolios

opted for the latter model so that we can also readily apply all
code on practical function optimization aside of mere bench-
marking. Apart of that, the available performance data does
not include information about algorithm iterations, listin-
gonly individual function evaluations. That makes it un-
clear when is a good time to switch. Lastly, the re-running
model allows migration of intermediate solutions between
algorithms as a simple extension.

In Section 2, we introduce the COCOpf software, ex-
plaining its architecture, general API and a few interesting
implementation points. In Section 3, we establish a refer-
ence algorithm portfolio, benchmarking its individual mem-
bers and two algorithm selection methods implemented in
the framework. We present the benchmark results in Section
4 and conclude with a results summary and outline of a few
directions of future work in Section 5.

2. COCOpf Framework
Our framework has been implemented as a Python

module that can be imported by user applications. The
framework provides the means to run the experiment on a
given set of benchmark scenarios, maintains a population of
algorithm instances and provides a complex wrapper to indi-
vidual algorithms that uses an existing per-iteration callback
mechanism to suspend and resume execution of the algo-
rithm after a single iteration. Algorithm wrappers for the
SciPy optimization methods and the reference implementa-
tion of CMA are available out-of-the box as well as two ex-
ample algorithm selection strategies that are benchmarked
below. The framework is publicly available as free software
under the permissible MIT licence at https://github.
com/pasky/cocopf.

In design of such a framework, a choice presents it-
self — to either build a generic main program which allows
an experiment to choose a certain configuration and plug in
custom callbacks, or to prepare a set of ”lego bricks” that
replace common parts of the main program but letting each
experiment provide a separate main program. We opted for
the latter; it reduces encapsulation and requires slightly more
repetitive code, but it allows a much greater degree of flexi-
bility encouraging diverse experiments.

2.1. Experiment Wrapper

The Experiment class wraps up the common code that
sets up the COCO benchmark, initializing the logs, sets of
dimensions and function instances etc. It also provides an
iterator that in turn returns individual function instances to
be minimized, and a pretty-printing progress report func-
tion. After an experiment is finished, the standard BBOB
postprocessing tools may be used to examine and plot the
performance data. An example of usage is shown in Fig. 1.

e = Experiment(maxfev=10000, shortname="EG50",
comments="Eps-greedy, eps=0.5")

for i in e.finstances():
minimization(i)
e.f.finalizerun()
e.freport(i)

Fig. 1. A minimalistic main body of a Python script using the
Experiment class. Function minimization is to be pro-
vided by the user.

2.2. Minimization Wrappers

All algorithms are executed via the MinimizeMethod
class. Its primary purpose is to produce a callable
Python object from a user-provided string name of al-
gorithm. By default, it calls the scipy.optimize.minimize
API with unchanged method name and wraps it in the
scipy.optimize.basinhopping API. However, it is expected
the user will create a subclass adding custom optimizers;
a demo subclass adding the CMA optimization is included.3

We were presented with a software engineering prob-
lem of how to suspend, resume and cancel the algorithms
between iterations without requiring any modification to the
algorithm code, while all we have is a callback executed after
each iteration. Our answer is the MinimizeStepping class
which creates a separate thread for each algorithm instance
and uses the standard Python Queue mechanism to pause ex-
ecution of each thread within the callback code based on in-
structions from the main thread. At any time, only a single
thread is running. To cancel execution (when time is up or
a solution is found) we pass a special message through the
queue that raises an exception within the callback, eventu-
ally cancelling the whole algorithm and thread orderly. An
“mlog” facility is provided to log function evaluation status
at the end of each algorithm iteration.

2.3. Portfolio Population

The Population class maintains a population of algo-
rithms drawn from the algorithm portfolio; each population
member corresponds to a tuple of method, solution coordi-
nates, current value and number of iterations invested. Usu-
ally, the size of population is static, but dynamically adding
new members is also supported.

In a typical case, the population size is the same as the
portfolio size, meaning that only a single solution is tracked
for each algorithm. However, in principle this may not be the
case. In fact, we can also make a population from solutions
all using a single algorithm — this special case corresponds
to the problem of finding an efficient restart or resume sched-
ule for a particular algorithm.

3The custom optimizers may also legitimately want to use the Basin
Hopping algorithm (see Sec. 3.1), but SciPy allows using custom minimiza-
tion routines with the basinhopping API only starting with version 0.14.



POSTER 2014, PRAGUE MAY 15 3

3. Benchmarking Simple Portfolios
To showcase COCOpf, we composed a reference port-

folio from readily available open source Python optimizers
and implemented two selection strategies.

3.1. Reference Algorithm Portfolio

As a testbed algorithm portfolio, we have chosen the
six stock minimizers provided by SciPy v0.13 [8] that are
available for direct use:4

• Nelder-Mead uses the Simplex algorithm. [12] [19]

• Powell implements a tweaked version of the Powell’s
conjugate direction method. [14]

• CG is a nonlinear conjugate gradient method using the
Fletcher-Reeves method. [13, p. 120–122]

• BFGS uses the quasi-Newton method of Broyden,
Fletcher, Goldfarb and Shanno [13, p.136] with numer-
ically approximated derivations.

• L-BFGS-B is a limited-memory variant of BFGS with
box constraints. [1] [20]

• SLSQP implements Sequential Least SQuares Pro-
gramming [10] with inequalities as the box constraints.

All of these SciPy minimizers perform local mini-
mization; to achieve global optimization, we wrap them in
the “Basin Hopping” restart strategy [18] (also provided by
SciPy), which is conceptually similar to Simulated Anneal-
ing with a fixed temperature. The strategy performs the
hopping step 100 times (the default) before restarting from
scratch. On restart, the starting position is determined uni-
formly randomly in the [−5,5]k space.

To improve the portfolio performance on more difficult
functions, we also included the popular CMA algorithm [4]
(in the “production“ version of its official reference Python
implementation), i.e. a genetic algorithm that follows the
Covariance Matrix Adaptation evolution strategy.

In accordance with our black-box approach, we kept
all the algorithms at their default settings and did not tune
any of their parameters. Where applicable, we set the box
constraints to [−6,6]k bounds.5

Each algorithm provides a callback method that is in-
voked after a single iteration of the algorithm; we suspend
the algorithm after each callback invocation.

4Other minimizers are also available in SciPy, but they are either unsuit-
able for black-box minimization or do not provide a callback mechanism to
allow pausing execution between individual iterations.

5The optimum is guaranteed to be in [−5,5]k , but some minimizers
may behave erraticaly when the optimum is near to or at the bounds.

The reference portfolio is not perfectly balanced and
certainly would benefit from algorithms with more diverse
performance. Our motivation for going with these is that
the implementations are free software, trivial to obtain and
therefore representing a very low barrier of entry. Also,
a SciPy-based portfolio gives valuable feedback to SciPy
users regarding the best algorithm to use on a certain func-
tion, and provides a gateway to introduce an algorithm port-
folio selection strategy to SciPy itself in the future.

3.2. Algorithm Selection Strategies

While the core of our followup work involves research-
ing various algorithm selection strategies, in the context
of presentation of the COCOpf framework, we decided to
demonstrate just the performance of two simple simplest
methods whose source code is also a part of the framework:

• The UNIF strategy performs a number of rounds where
in every round, a uniformly randomly selected algo-
rithm is run for a single iteration.

• The EG50 strategy performs a number of rounds where
in every round, an epsilon-greedy policy with ε = 0.5
selects the algorithm to run for one iteration. That is,
the algorithm with the currently best solution is run
with p = 0.5 and a randomly chosen algorithm is run
otherwise.

4. Results
Results from experiments according to [5] on the

benchmark functions given in [2, 7] are presented in Fig-
ures 2, 3 and 4.6 The expected running time (ERT) used
in the figures depends on a given target function value,
ft = fopt+∆f , and is computed over all relevant trials as the
number of function evaluations executed during each trial
while the best function value did not reach ft, summed over
all trials and divided by the number of trials that actually
reached ft [5, 15].

If we review the results in context of choosing a best
(black-box function) SciPy optimizer, we can see that there
is no single right choice of a SciPy optimizer that works on
all function instances and computational budgets. We can
observe that Powell generally works best for separable func-
tions while BFGS and SLSQP are good choices for many
functions, especially in high dimensions. For non-separable
functions, CMA sooner or later overtakes the SciPy opti-
mizers but often with a slow start (which is relevant in case a
function evaluation is very expensive) and is not competitive
with the SciPy optimizers on separable functions.

6The full results dataset is available at http://pasky.or.cz/
sci/cocopf-scipy.



4 P. BAUDIŠ, COCOpf Algorithm Portfolios

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

1 Sphere

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

Fig.2. Expected running time divided by dimension versus dimension. Expected running time (ERT in number of f -evaluations)
divided by dimension for target function value 10−8 as log10 values versus dimension. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal lines give linear scaling, slanted dotted
lines give quadratic scaling. Black stars indicate statistically better result compared to all other algorithms with p < 0.01
and Bonferroni correction number of dimensions (six). Legend: ○:Nelder-Mead, ▽:Powell, ⋆:CG, ◻:BFGS, △:L-BFGS-B,
♢:SLSQP, 9:CMA, D:UNIF, 7:EG50



POSTER 2014, PRAGUE MAY 15 5

separable fcts moderate fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

CG

BFGS

CMA

Nelder-Mead

L-BFGS-B

SLSQP

UNIF

Powell

EG50

best 2009f1-5,5-D best 2009

EG50

Powell

UNIF

SLSQP

L-BFGSB

Nelder

CMA

BFGS

CG
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

L-BFGS-B

CG

SLSQP

BFGS

Powell

Nelder-Mead

UNIF

EG50

CMA

best 2009f6-9,5-D best 2009

CMA

EG50

UNIF

Nelder

Powell

BFGS

SLSQP

CG

L-BFGSB

ill-conditioned fcts multi-modal fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Powell

CG

L-BFGS-B

SLSQP

BFGS

Nelder-Mead

UNIF

EG50

CMA

best 2009f10-14,5-D best 2009

CMA

EG50

UNIF

Nelder

BFGS

SLSQP

L-BFGSB

CG

Powell
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 fu

nc
tio

n+
ta

rg
et

 p
ai

rs

CG

Nelder-Mead

BFGS

Powell

SLSQP

L-BFGS-B

UNIF

CMA

EG50

best 2009f15-19,5-D best 2009

EG50

CMA

UNIF

L-BFGSB

SLSQP

Powell

BFGS

Nelder

CG

weakly structured multi-modal fcts all functions

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

BFGS

CG

Powell

UNIF

Nelder-Mead

CMA

L-BFGS-B

SLSQP

EG50

best 2009f20-24,5-D best 2009

EG50

SLSQP

L-BFGSB

CMA

Nelder

UNIF

Powell

CG

BFGS
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

CG

BFGS

Powell

Nelder-Mead

SLSQP

L-BFGS-B

CMA

UNIF

EG50

best 2009f1-24,5-D best 2009

EG50

UNIF

CMA

L-BFGSB

SLSQP

Nelder

Powell

BFGS

CG

Fig.3. Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FE-
vals/D) for 50 targets in 10[−8..2] for all functions and subgroups in 5-D. The “best 2009” line corresponds to the best ERT
observed during BBOB 2009 for each single target.



6 P. BAUDIŠ, COCOpf Algorithm Portfolios

separable fcts moderate fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Nelder-Mead

L-BFGS-B

CG

SLSQP

BFGS

CMA

EG50

UNIF

Powell

best 2009f1-5,20-D best 2009

Powell

UNIF

EG50

CMA

BFGS

SLSQP

CG

L-BFGSB

Nelder
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Nelder-Mead

Powell

SLSQP

L-BFGS-B

BFGS

CG

EG50

UNIF

CMA

best 2009f6-9,20-D best 2009

CMA

UNIF

EG50

CG

BFGS

L-BFGSB

SLSQP

Powell

Nelder

ill-conditioned fcts multi-modal fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Nelder-Mead

Powell

CG

BFGS

L-BFGS-B

SLSQP

UNIF

EG50

CMA

best 2009f10-14,20-D best 2009

CMA

EG50

UNIF

SLSQP

L-BFGSB

BFGS

CG

Powell

Nelder
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

CG

Nelder-Mead

Powell

L-BFGS-B

BFGS

SLSQP

UNIF

EG50

CMA

best 2009f15-19,20-D best 2009

CMA

EG50

UNIF

SLSQP

BFGS

L-BFGSB

Powell

Nelder

CG

weakly structured multi-modal fcts all functions

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Nelder-Mead

Powell

EG50

SLSQP

CG

BFGS

L-BFGS-B

UNIF

CMA

best 2009f20-24,20-D best 2009

CMA

UNIF

L-BFGSB

BFGS

CG

SLSQP

EG50

Powell

Nelder
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Nelder-Mead

Powell

CG

L-BFGS-B

BFGS

SLSQP

UNIF

EG50

CMA

best 2009f1-24,20-D best 2009

CMA

EG50

UNIF

SLSQP

BFGS

L-BFGSB

CG

Powell

Nelder

Fig.4. Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FE-
vals/D) for 50 targets in 10[−8..2] for all functions and subgroups in 20-D. The “best 2009” line corresponds to the best ERT
observed during BBOB 2009 for each single target.



POSTER 2014, PRAGUE MAY 15 7

5. Discussion and Conclusion
We described an easy-to-use framework that allows

users to plug in and experiment with custom algorithm selec-
tion strategies and then directly move to use these strategies
on practical problems instead of benchmarks. The frame-
work currently focuses on online black-box algorithm port-
folios, being careful not to require any modification to stock
and third-party optimization routines besides a simple call-
back mechanism that is commonly provided. The framework
could be easily modified to deal with off-line scenarios too.

Our insights may provide guidance for users of the
SciPy optimizers. Regarding algorithm portfolios, the re-
sults show that even a very naive algorithm selection strat-
egy can be beneficial; while it cannot beat the best algorithm
CMA in high-dimensional cases on average over all func-
tions, it provides a more consistent performance than CMA,
translating to best-of-all performance in low dimensions.

5.1. Future Work

The currently chosen reference portfolio is somewhat
ad hoc, chosen in part to contribute value to the SciPy
project, but not optimal for further general research into al-
gorithm portfolios. In the long run, we hope to transition to
a better balanced portfolio.

A common scheme of online algorithm selection
schemes is that a credit is assigned to an algorithm in each
round based on its performance (e.g. relative improvement,
absolute value) and accrued over the rounds (e.g. averaging
it or using an adaptation rule). Credit-based selection is so
common that it should be directly supported by the frame-
work; diverse pluggable strategies would then enable explo-
ration of various interesting strategy combinations. A work-
in-progress preview implementation is already available.

Actually running the individual algorithms is appropri-
ate for optimizing non-benchmark functions and useful in
the future when solutions may migrate within the portfolio
population. However, a useful feature would be to allow test-
ing selection strategies based on just the saved “mlog“ data
(see Sec. 2.2) from individual algorithm runs.

Acknowledgements
Research described in the paper was supervised by Dr.

Petr Pošı́k and supported by the CTU grant SGS14/194/
OHK3/3T/13 “Automatic adaptation of search algorithms”.

References
[1] BYRD, R. H., LU, P., NOCEDAL, J., AND ZHU, C. A limited mem-

ory algorithm for bound constrained optimization. SIAM Journal on

Scientific Computing 16, 5 (1995), 1190–1208.
[2] FINCK, S., HANSEN, N., ROS, R., AND AUGER, A. Real-

parameter black-box optimization benchmarking 2009: Presentation
of the noiseless functions. Tech. Rep. 2009/20, Research Center PPE,
2009. Updated February 2010.

[3] GOMES, C. P., AND SELMAN, B. Algorithm portfolios. Artificial
Intelligence 126, 1 (2001), 43–62.

[4] HANSEN, N. The CMA evolution strategy: a comparing review. In
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Ben-
goetxea, Eds. Springer, 2006, pp. 75–102.

[5] HANSEN, N., AUGER, A., FINCK, S., AND ROS, R. Real-parameter
black-box optimization benchmarking 2012: Experimental setup.
Tech. rep., INRIA, 2012.

[6] HANSEN, N., ET AL. Comparing continuous optimisers: Coco.
http://coco.gforge.inria.fr/.

[7] HANSEN, N., FINCK, S., ROS, R., AND AUGER, A. Real-parameter
black-box optimization benchmarking 2009: Noiseless functions def-
initions. Tech. Rep. RR-6829, INRIA, 2009. Updated February 2010.

[8] JONES, E., OLIPHANT, T., PETERSON, P., ET AL. SciPy: Open
source scientific tools for Python, 2001–.

[9] KOTTHOFF, L. Algorithm selection for combinatorial search prob-
lems: A survey. AI Magazine (2014).

[10] KRAFT, D. A software package for sequential quadratic program-
ming. DFVLR Obersfaffeuhofen, Germany, 1988.

[11] MUÑOZ, M., KIRLEY, M., AND HALGAMUGE, S. The algorithm
selection problem on the continuous optimization domain. In Com-
putational Intelligence in Intelligent Data Analysis, C. Moewes and
A. Nürnberger, Eds., vol. 445 of Studies in Computational Intelli-
gence. Springer Berlin Heidelberg, 2013, pp. 75–89.

[12] NELDER, J. A., AND MEAD, R. A simplex method for function
minimization. The Computer Journal 7, 4 (1965), 308–313.

[13] NOCEDAL, J., AND WRIGHT, S. Numerical optimization. Springer-
Verlag, 2006.

[14] POWELL, M. J. An efficient method for finding the minimum of
a function of several variables without calculating derivatives. The
computer journal 7, 2 (1964), 155–162.

[15] PRICE, K. Differential evolution vs. the functions of the second
ICEO. In Proceedings of the IEEE International Congress on Evo-
lutionary Computation (1997), pp. 153–157.

[16] RICE, J. R. The algorithm selection problem. Advances in Computers
15 (1976), 65–118.

[17] VRUGT, J. A., ROBINSON, B. A., AND HYMAN, J. M. Self-adaptive
multimethod search for global optimization in real-parameter spaces.
IEEE Trans. on Evolutionary Computation 13, 2 (2009), 243–259.

[18] WALES, D. J., AND DOYE, J. P. K. Global optimization by basin-
hopping and the lowest energy structures of lennard-jones clusters
containing up to 110 atoms. The Journal of Physical Chemistry A
101, 28 (1997), 5111–5116.

[19] WRIGHT, M. H. Direct search methods: Once scorned, now re-
spectable. Pitman Research Notes in Math. Series (1996), 191–208.

[20] ZHU, C., BYRD, R. H., LU, P., AND NOCEDAL, J. Algorithm 778:
L-bfgs-b: Fortran subroutines for large-scale bound-constrained opti-
mization. ACM Transactions on Mathematical Software (TOMS) 23,
4 (1997), 550–560.

About Author. . .

Petr Baudiš has received his Bachelors degree and Masters
degree in Theoretical Computer Science at the Charles Uni-
versity in Prague. His Master thesis “MCTS with Informa-
tion Sharing” presented a state-of-art Computer Go program.
Currently, he is a PhD student at the Czech Technical Univer-
sity with principal research interest in Algorithm Portfolios
and applications of Monte Carlo Tree Search.


