
Online Black-box Algorithm Portfolios
for Continuous Optimization

Petr Baudiš and Petr Pošík baudipet@fel.cvut.cz
Department of Cybernetics, Czech Technical University, Prague

Goal: Find minimum of a black-box function
that we haven’t seen before, when we have mul-
tiple optimization algorithms available.

Problem: How to switch between the available
algorithms so that we don’t reach the minimum
much slower than the best algorithm?

Contribution: Algorithm selection strategy
with only small slowdown and better perfor-
mance stability compared to any fixed algorithm.

Background

Algorithm Portfolios

Often, we have multiple heuristic algo-
rithms, each suited to a different class
of problems. Algorithm Portfolios aim
to combine them within a single general
solver that will choose the best suited
algorithm for each input.
For each problem instance on input, we
apply a selection strategy to pick an al-
gorithm from this portfolio:
▶ Once or along a fixed schedule (of-

fline selection) based on one-time
measured features.

▶ In multiple rounds (online selection)
allocating time based on their previ-
ous performance.

These approaches have not yet been re-
ally combined. Here, we focus on the
online selection strategies.

Black-box Optimization

Continuous black-box optimization
solves the problem of finding a mini-
mum value of a continuous function
without accessible analytical form.
Vast applications range from operations
research to machine learning. Many
algorithms are available — simplex al-
gorithms, gradient descent methods or
population-based methods.
The de-facto standard for benchmarking
optimization methods is the COmpar-
ing Continuous Optimisers COCO plat-
form. It provides the infrastructure, glue
code for both running experiments and
preparing high quality figures, a set of
common reference results and the code
for a set of benchmark functions.

Applying algorithm portfolios on continuous black-box optimization is still a fresh area of
research. The main results so far lie either in population methods, combining a variety of
genetic algorithms together in non-black-box fashion, or in offline methods based chiefly
on exploratory landscape analysis.
Previously, we developed COCOpf: an open source Python framework for easy devel-
opment and benchmarking of selection strategies for algorithm portfolios.

Our Reference Portfolio

We have chosen the six stock minimizers
provided by SciPy v0.13:
▶ Nelder-Mead, the Simplex algorithm.
▶ Powell, the tweaked Powell’s conju-

gate direction method.
▶ CG, the nonlinear conjugate gradient

Fletcher-Reeves method.
▶ BFGS, the quasi-Newton method

of Broyden, Fletcher, Goldfarb and
Shanno.

▶ L-BFGS-B, the limited-memory vari-
ant of BFGS with box constraints.

▶ SLSQP, the Sequential Least SQuares
Programming with box constraints.

These are local minimizers, therefore we
use a SciPy wrapper of the Basin Hop-
ping restart strategy; conceptually similar
to Simulated Annealing with a fixed tem-
perature.
We also included the popular CMA algo-
rithm (genetic algorithm with the Covari-
ance Matrix Adaptation evolution strat-
egy). It converges slowly on reasonable
functions but it can beat even many dif-
ficult targets.
We use portfolio size |PF| = 7 as the ex-
ponent base in slowdown measurements.

Portfolio Behavior

Based just on performance up to a point, does a strategy have enough information on
which algorithm is worth further investment? Sometimes!

Function classification by convergence:

70 71 72 73 74 75 76 77

Budget

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

M
ed

ia
n 

Fu
nc

tio
n 

Va
lu

es

Algorithm
Oracle F16

Stable function (easy)

70 71 72 73 74 75 76 77

Budget

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

M
ed

ia
n 

Fu
nc

tio
n 

Va
lu

es

Algorithm
Oracle F13

Volatile function (hard)

Selection Strategies

We implemented various selection strate-
gies — Probability Matching and Adaptive
Pursuit, Threshold Ascent, MetaMax vari-
ants and UCB1 with Sum-of-Ranks and
Area-Under-the-Curve rewards. They all
performed worse than those listed below.
In every round, a strategy selects an algo-
rithm and iterates it once:
▶ RR samples algorithms in round robin.
▶ EG follows the epsilon-greedy policy.

The algorithm with the currently best
solution is run with p = 0.5, a randomly
chosen algorithm otherwise.

▶ LUCB follows the UCB1 MAB policy,
where the reward is the EWMA log-
rescaled current best function value.

▶ RUCB follows the UCB1 MAB policy,
where the reward is the EWMA rank
of the algorithm (when sorted by their
current best function value).

The UCB1 Policy

Algorithm portfolio strategy is related to
the multi-armed bandit problem (MAB).
We iterate choices that bring stochastic re-
ward based on a previously unknown but
“roughly stationary” distribution.

πUCB1(n) = argmaxi

µ̂i(n) + c

√
2 ln n
Ti(n)


UCB1 minimizes cumulative regret.
Therefore, here we minimize the (rescaled)
sum of all sampled function values.

Typically, c = 2 or much less is used. We
use c = 16 (high exploration bias) because
of volatile functions.
LUCB function value log-rescaling:
When converting arbitrarily raned function
value to µ̂i ∈ [0, 1], we assume that we are
just short of optimum, and that in general
we converge exponentially fast.

fopt? = min f −∆f ∆f = 10−8

gi = log(fi−fopt?) µi = 1− gi − min g
max g − min g

Portfolio Performance

Average log|PF| slowdown of some algorithms and the selection strategies on function
classes:

Solver all multi single volatile stable CMA-good CMA-bad
CMA 0.7 1.1 0.6 0.5 1.1 0.0 1.5
BFGS 1.5 0.7 1.8 1.4 1.7 2.2 0.8
LUCB 0.9 0.9 0.9 1.3 0.3 1.1 0.8
RUCB 1.3 0.9 1.4 1.4 1.1 1.7 0.8

EG 1.4 1.0 1.6 1.6 1.1 2.0 0.9
RR 1.5 1.1 1.7 1.8 1.2 2.1 1.0

Conclusions:

▶ On stable functions, a strategy is much better (on average over multiple functions)
than using any single fixed algorithm!

▶ In general, portfolio strategy brings in better runtime balance. CMA is slightly better
than a portfolio on average, but is much slower on functions where it doesn’t converge.

Future Work

The currently chosen reference portfolio
is somewhat ad hoc and unbalanced with
CMA dominating in many functions. This
makes it actually an interesting testbed,
but we need to add more high performance
algorithms anyway.
Dream team: BIPOP-CMA, NEWUOA,
LineSearch-fminbnd, LineSearch-STEP.

Performance modelling in the style of the
MultiEA or GambleTA algorithms could
improve performance-based predictions.
Lesson from volatile functions: purely
uninformed portfolios are clearly limited.
UCB1 can be naturally amended with prior
information — for example exploratory
landscape analysis using machine learning.

Acknowledgements

This research is supported by the CTU grant SGS14/194/OHK3/3T/13 “Automatic
adaptation of search algorithms”.


