
Pachi: State of the Art Open Source Go Program

Petr Baudǐs1? and Jean-loup Gailly2

1 Faculty of Mathematics and Physics,
Charles University Prague (pasky@ucw.cz)

2 (jloup@gailly.net)

Abstract. We present a state of the art implementation of the Monte
Carlo Tree Search algorithm for the game of Go. Our “Pachi” software
is currently one of the strongest open source Go programs, competing at
the top level with other programs and playing evenly against advanced
human players. We describe our implementation and choice of published
algorithms as well as some notable original improvements: an adaptive
time control algorithm, dynamic komi, and usage of the criticality statis-
tic. We also present new methods to achieve efficient scaling both in terms
of multiple threads and multiple machines in a cluster.

1 Introduction

The board game of Go has proven to be an exciting challenge in the field of
Artificial Intelligence. Programs based on the Monte Carlo Tree Search (MCTS)
algorithm and the RAVE variant in particular have enjoyed great success in the
recent years. In this paper, we present our Computer Go framework “Pachi”
with the focus on its RAVE engine that comes with a particular mix of popular
heuristics and several original improvements.

In section 2, we briefly describe the Pachi software. In section 3, we detail
the MCTS algorithm and the implementation and heuristics used in Pachi. The
section 4 contains a summary of our original extensions to the MCTS algorithm
— an adaptive time control algorithm (Sec. 4.1), the dynamic komi method (Sec.
4.2) and our usage of the criticality statistic (Sec. 4.3). In section 5, we detail
our scaling improvements, especially the strategy behind our distributed game
tree search. The section 6 summarizes Pachi’s performance in the context of the
whole Computer Go field.

1.1 Experimental Setup

We use several test scenarios for the presented results with varying number of
simulations per move. Often, results are measured only with much faster time
settings than that used in real games — by showing different relative contribu-
tions of various heuristics, we demonstrate that the aspect of total time available
may matter significantly for parameter tuning.

? Supported by the GAUK Project 66010 of Charles University Prague.



Fig. 1: Block schema of the Pachi architecture. When multiple options of the
same class are available, the default module used is highlighted.

In our “low-end” time settings, we play games against GNU Go level 10
[4] with single threaded Pachi, 500 seconds per game, i.e. about 5,000 playouts
per move. In the “mid-end” time settings, we play games against Fuego 1.1 [9]
with four Pachi threads, fixed 20,000 playouts per move. In the “high-end” time
settings, we play against Fuego 1.1 as well but using 16 threads, fixed 250,000
playouts per move.

The number of playouts (250,000 for Pachi and 550,000 for Fuego3 in “high-
end”) was selected so that both use approximately the same time, about 4 sec-
onds/move on average. We use the 19 × 19 board size unless noted otherwise.
In the “high-end” configuration Pachi is 3 stones stronger than Fuego so we
had to impose a large negative komi −50.5 with Pachi always taking white.
However, while Pachi scales much better than Fuego, in the “mid-end” configu-
ration Fuego and Pachi are about even.4 The “low-end” Pachi is stronger than
GNU Go, therefore Pachi takes white and games are played with no komi. Each
test was measured using 5000 games, except for the “low-end” comparisons; we
used a different platform and had to take smaller samples.

2 The Pachi Framework

The design goals of Pachi have been simplicity, minimum necessary level of
abstraction, modularity and clarity of programming interfaces, and focus on
maximum playing strength.

3 The interpretation of max games changed in Fuego 1.0 such that it includes the
count of simulations from reused trees. Pachi does not include them.

4 When we tried to match Fuego against the “low-end” Pachi, Fuego was 110 Elo
stronger.



Pachi is free software licenced under the GNU General Public Licence [11].
The code of Pachi is about 17000 lines of pure C, most of the code is richly
commented and follows a clean coding style. Pachi features a modular architec-
ture (see Fig. 1): the move selection policy,5 simulation policy and other parts
reside in pluggable modules and share libraries providing common facilities and
Go tools. Further technical details on Pachi may be found in [2].

3 Monte Carlo Tree Search

To evaluate moves, Pachi uses a variant of the Monte Carlo Tree Search (MCTS)
— an algorithm based on an incrementally built probabilistic minimax tree. We
repeatedly descend the game tree, run a Monte Carlo simulation when reaching
the leaf, propagate the result (as a boolean value)6 back to the root and expand
the tree leaf when it has been reached n = 8 times.

Algorithm 1 NodeValue

Require: sims, simsAMAF are numbers of simulations pertaining the node.
Require: wins,winsAMAF are numbers of won simulations.

NormalTerm← wins
sims

RAVETerm← winsRAVE
simsRAVE

= winsAMAF
simsAMAF

β ← simsRAVE
simsRAVE+sims+simsRAVE·sims/3000

NodeValue← (1− β) ·NormalTerm + β · RAVETerm

The MCTS variants differ in the choice of the next node during the descent.
Pachi uses the RAVE algorithm [5] that takes into account not only per-child
winrate statistics for the move being played next during the descent, but also
(as a separate value) anytime later7 during the simulation (the so-called AMAF
statistics). Therefore, we choose the node with the highest value given by Alg. 1
above, a simplified version of the RAVE formula [5] (see also Sec. 4.2).

3.1 Prior Values

When a node is expanded, child nodes for all the possible followup moves are
created and pre-initialized in order to kick-start exploration within the node.
The value (expectation) for each new node is seeded as 0.5 with the weight of
several virtual simulations, we have observed this to be important for RAVE
stability. The value is further adjusted by various heuristics, each contributing
ε fixed-result virtual simulations (“equivalent experience” ε = 20 on 19 × 19,
ε = 14 on 9× 9). (This is similar to the progressive bias [7], but not equivalent.)

5 The default policy is called “UCT”, but this is only a traditional name; the UCT
exploration term is not used by default anymore.

6 In the past, we have been incorporating the final score in the propagated value,
however this has been superseded by the Linear Adaptive Komi (Sec. 4.2).

7 Simulated moves played closer to the node are given higher weight as in Fuego [9].



Table 1: Elo performance of various prior value heuristics on 19× 19.

Heuristic Low-end Mid-end High-end

w/o eye malus −31± 32 −3± 16 +1± 16

w/o ko prior −15± 32 −3± 16 +10± 16

w/o 19× 19 lines −15± 33 −4± 16 −6± 16

w/o CFG distance −66± 32 −66± 16 −121± 16

w/o playout policy −234± 42 −196± 16 −228± 16

Most heuristics we use and the mechanism of equivalent experience are similar
to the original paper on Mogo [5]. Relative performance of the heuristics is
shown in Table 1. The Elo difference denotes program strength change when the
heuristic is disabled. It is apparent that the number of simulations performed is
important for evaluating heuristics.

The following heuristics are applied:

– The “eye” heuristic adds virtual lost simulations to all moves that fill single-
point true eyes of our own groups. Such moves are generally useless and not
worth considering at all; the only exception we are aware of is the completion
of the “bulky five” shape by filling a corner eye, this situation is rare but
possible, thus we only discourage the move using prior values instead of
pruning it completely.

– We encourage the evaluation of ko fights by adding virtual wins to a move
that re-takes a ko no more than 10 moves old.

– We encourage sane 19×19 play in the opening by giving a malus to first-line
moves and bonus to third-line moves if no stones are in the vicinity.

Table 2: The ε values for the CFG heuristic.

δ = 1 δ = 2 δ = 3

19× 19 55 50 15

9× 9 45 40 15

– We encourage the exploration of local sequences by giving bonus to moves
that are close to the last move based on δ, the length of the shortest path in
the Common Fate Graph [13], with variable ε set as shown in Fig. 2. This
has two motivations — first, with multiple interesting sequences available on
the board, we want to ensure the tree does not swap between situations ran-
domly but instead reads each sequence properly. Second, this is well rooted
in the traditional Go strategy where large portion of moves is indeed “sente”,
requiring a local reply.

– We give joseki moves twice the default ε (using the joseki dictionary de-
scribed below). This currently has no performance impact.



Table 3: Elo performance of some playout heuristics on 19× 19.

Heuristic Low-end Mid-end High-end

w/o Capture −563± 106 −700 −949

w/o 2-lib. −86± 34 — —

w/o 3× 3 pats. −324± 37 −447± 34 −502± 36

w/o self-atari −34± 33 — −31± 16

– We give additional priors according to the suggestions by the playout policy.
The default ε is halved for multi-liberty group attack moves.

3.2 Playouts

In the game simulations (playouts) started at the leaves of the Monte Carlo Tree,
we semi-randomly pick moves until the board is completely filled (up to one-point
eyes). The move selection should be randomized, but heuristics allowing for
realistic resolution of situations in various board partitions are highly beneficial.

We use the Mogo-like rule-based policy [12] that puts emphasis on localized
sequences and matching of 3× 3 “shape” board patterns. Heuristics are tried in
a fixed order and each is applied with certain probability p, by default p = 0.8
for 19×19 and p = 0.9 for 9×9.8 A heuristic returns a set of suggested moves; if
the set is non-empty, a random move from the set is picked and played, if the set
is empty (the common case), the next heuristic is tried. If no heuristic matches,
a uniformly random9 move is chosen.

See Table 3 for relative performance of the heuristics with the largest im-
pact10 (the Elo difference again denotes strength change when the heuristic is
disabled).

We apply the following rules:

– With p = 0.2, ko is re-captured if the opponent played a ko in the last 4
moves.

– Local checks are performed — heuristics applied in the vicinity of the last
move.

• With p = 0.2, we check if the liberties of the last move group form a
“nakade” shape.11

• If the last move has put its own group in atari, we capture it with p = 0.9.
If it has put a group of ours in atari, we attempt to escape or counter-
capture other neighboring groups.

8 Some of the precise values below are 19× 19 only, but that is mainly due to a lack
of tuning for 9× 9 on our part.

9 Up to one-point eye filling and the self-atari filter described later.
10 Some of the low-probability heuristics represent only a few Elo of improvement and

could not have been re-measured precisely with the current version.
11 I.e. if we could kill the group by playing in the middle of the group eyespace.



• If the last move has reduced its own group to just two liberties, we put
it in atari, trying to prefer atari with low probability of escape; if the
opponent has reduced our group to two liberties, we attempt to either
escape or put some neighboring group in atari, aiming to handle the
simplest capturing races.

• With p = 0.2, we attempt to do a simplified version of the above (safely
escaping or reducing liberties of a neighboring group) for groups of three
and four liberties.

• Points neighboring the last two moves are (with p = 1) matched for 3×3
board patterns centered at these points similar to patterns presented in
[12], extended with information on “in atari” status of stones. We have
made a few minor empirical changes to the pattern set.

– We attempt to play a joseki12 followup based on a board quadrant match
in a hash table. The hash table has been built using the “good variations”
branches of the Kogo Joseki Dictionary [17]. This has non-measurable effect
on performance against other programs, but makes Pachi’s play prettier for
human opponents in the opening.

The same set of heuristics is also used to assign prior values to new tree nodes
(as described above). Bad self-atari moves are pruned from heuristic choices and
stochastically also from the final random move suggestions: in the latter case, if
the other liberty of a group that is being put in self-atari is safe to play, it is
chosen instead, helping to resolve some tactical situations involving shortage of
liberties and false eyes.

4 MCTS Extensions

4.1 Time Control

We have developed a flexible time allocation strategy when the total thinking
time is limited, with the goal of the longest search in the most critical parts of
the game — in the middle game and particularly when the best move is unclear.

We assign two time limits (and a fixed delay for network lag and tree man-
agement overhead) for the next move — the desired time td and maximum time
tm. Only td time is initially spent on the search, but this may be extended up to
tm in case the tree results are too unclear (which triggers very often in practice).

Given the main time T and estimated number of remaining moves in the
game13 R, the default allocation is td = T/R and tm = 2 td, recomputed on each
move so that we account for any overspending.

Furthermore, we tweak this allocation based on the move number so that td
peaks in the middle game. Be tM the maximum time tm at the end of the middle
game (40% of the board has been played). In the beginning, we linearly increase

12 Common move sequence, usually played in a corner in the game beginning.
13 We assume that on average, 25% of board points will remain unoccupied in the final

position. We always assume at least 30 more moves will be required.



-40

-20

0

20

40

60

E
lo

0.0 0.02 0.04 0.06 0.08 0.1

bestr

Fig. 2: Best — best child ratio bestr.

-40

-20

0

20

40

60

E
lo

1.0 1.5 2.0 2.5 3.0 3.5

best2 (given bestr=0.02)

Fig. 3: Best — second best delta best2.

the default td up to tM until 20% of the board has been played (the beginning
of the middle game) and set td = tM for the whole middle game. After this, or if
we are in byoyomi, the remaining time is spread uniformly as described above.

For overtime (byoyomi), we use our generalized overtime specification: after
the main time elapses, fixed-length overtime To for each next m moves is al-
located, with n overtime periods available. Japanese byoyomi is a specific case
with m = 1 while Canadian byoyomi implies n = 1. If overtime is used, the main
time is still allocated as usual, except that tm = 3 td; furthermore, the lower
time for td of the main time is the td for byoyomi, and the first n − 1 overtime
periods are spent as if they were part of the main time. The time per move in
the last overtime period is allocated as td = To/m and tm = 1.1 td.

The search is terminated early if the expectation of win is very high µ ≥ 0.9
or the chosen move cannot change14 anymore. On the other hand, the tree search
continues even after td time already elapsed if the current state of the tree is
unclear, i.e. either of the following conditions triggers:

– The expectations of the best move candidate µa and its best reply µaa are
too different, bestr = |µa − µaa| > 0.02.

– The two best move candidates are equally simulated, i.e. best2 = εa/εb < 2.5
for the playout counts εa, εb of the two best moves.

– The best move (root child chosen based on the most simulations) is not the
move with the highest win expectation.

Figures 2 and 3 shows that using such a flexible time strategy results in up
to 80 Elo performance increase compared to baseline.15

The recently published time allocation of Erica [14] is similar, but while we
focus on over-spending strategies, Erica focuses more on the middle game time
allocation (adjusting time non-linearly, for a peak, not a plateau). Our middle

14 We choose the most simulated node as the move to play. We terminate search early
if the most simulated node cannot change even if it did not receive any more simu-
lations for the rest of the tm time.

15 We used a very fast “low-end” scenario with 300 seconds per game.



game time allocation algorithm is not a source of significant performance benefits
and we expect that our and Erica’s algorithm could be reconciled.

4.2 Dynamic Komi

The MCTS algorithm evaluates the possible moves most accurately when the
winning rate is near 50%. If most simulations are won or lost, the resolution of
the evaluation naturally gets more coarse. Such “extreme situations” are fairly
common in Go — especially in handicap games or in the endgame of uneven
matches. The dynamic komi technique [1] aims to increase MCTS performance
in such situations by shifting the win-loss score threshold (komi) from zero to
a different value; if a player winning 90% of simulations is required to win by
a margin of 10 points instead of just 1 point, we can expect the winning rate
to drop and the game tree will get information with slight bias but also much
higher resolution.

In Pachi, we have previously successfuly employed mainly the Linearly De-
creasing Handicap Compensation (LDHC) and Value-based Situational Com-
pensation (VSC) [1]. Recently, we have introduced another novel method: the
Linear Adaptive Komi. It uses LDHC up to a fixed number of moves, then in-
creases the komi against Pachi if it wins with probability above a fixed sure win
threshold (we use 0.85). This retains good performance of LDHC for handicap
games and allows winning by a large point margin when Pachi has a comfort-
able lead. Without this, Pachi is indifferent between the winning moves, often
steering to a 0.5 point win by playing what humans consider as silly moves. At
the same time, this strategy is simpler and more robust than VSC.

4.3 Criticality

RAVE improves over the plain MCTS by using approximate information on move
performance gathered from related previous simulations. We can supply further
information using the point criticality — the covariance of owning a point and
winning the game [8] [18],

Crit(x) = µwin(x) − (2µb(x)µb − µb(x) − µb + 1)

with µb(x) and µw(x) being the expectations of black and white owning the
coordinate, and µb and µw the expectations of a player winning the game.

The criticality measure itself has been already proposed in the past. We
introduce an effective way to incorporate criticality in the RAVE formula — in-
creasing the proportion of won RAVE simulations in the nodes of critical moves:

simsRAV E = (1 + c · Crit(x)) · simsAMAF

winsRAV E = (1 + c · Crit(x)) · winsAMAF

We track criticality in each tree node based on the results of simulations
coming through the node. We use criticality only when the node has been visited



-600

-500

-400

-300

-200

-100

0

100

200

300

400

500
E

lo

15.6 31.3 62.5 125 250 500 1000 2000 4000 8000 16000 32000

playouts (thousands)

1
1

1
2

1
4

1
8

1
16

2
16

4
16

8
16

16
16

32
16

64
16

128
16

machines
threads/mach.

1 machine, komi -22.5
1 machine, komi -50.5
n machines, komi -22.5, no virtual win
n machines, komi -50.5
n machines, 9 9

Fig. 4: Thread and distributed scalability.

at least n = 2000 times. c = 1.1 yields an improvement of approximately 10 Elo
points in the “high-end” scenario, but n = 192 can achieve as much as 69 ± 32
Elo points in the “low-end” scenario.

More details on this way of criticality integration may be found in [2]. A
dynamic way of determining n may make the improvement more pronounced in
the future.

5 Parallelization

Pachi supports both shared memory parallelization and cluster parallelization.
It is highly scalable with more time or more threads, and scales relatively well
with more cluster nodes.

Fig. 4 shows general scaling of Pachi. In all the distributed experiments and
most single machine experiments, Fuego and Pachi both use 16 threads per
machine and a fixed number of playouts. The measurements are done on 19×19.

5.1 Shared Memory Parallelization

Historically, various thread parallelization approaches for MCTS have been ex-
plored [6]. In Pachi, we use the in-tree parallelization, with multiple threads



-100

-50

0

50

100

150

200

E
lo

1 2 3 4 5

handicap

Fig. 5: Strength variation with handicap.

-200

-150

-100

-50

0

50

100

150

200

E
lo

-59.5 -44.5 -29.5 -14.5 0.5

komi

Fig. 6: Strength variation with komi.

performing both the tree search and simulations in parallel on a shared tree and
performing lock-free tree updates [9]. To allocate all children of a given node,
Pachi does not use a per-thread memory pool, but instead a pre-allocated global
node pool and a single atomic increment instruction updating the pointer to the
next free node.

The leftmost curve in Fig. 4 shows scaling performance on a single machine
when raising number of playouts per move from 15,625 to 8,000,000 against
a constant opponent (Fuego 1.1 with 550,000 playous per move). To allow an
average time per move of at least 2 seconds, the number of threads was reduced
for Pachi up to 125,000 playouts per move; above this the number of threads
was kept constant at 16 and so the time per move increased (up to 2 minutes
per move for 8,000,000 playouts).

The results show that Pachi is extremely scalable on a single machine. The
strength improvement is about 100 Elo per doubling in the middle of the range
where Pachi and Fuego have equal resources (16 threads each and same time per
move). The improvement drops to about 50 Elo per doubling at the high end,
but shows no sign of a plateau16. Segal [20] reports a similar scalability curve,
but with measurements limited to self-play and 4 hours per game.

To measure the effect of the opponent strength, experiments were done with
both komi −22.5 and −50.5. As seen in Fig. 4, the curves are very similar in
both cases, only offset by a roughly constant number of Elo points.

To connect the concept of negative komi and handicap stones, we measured
the Elo variation with a variable handicap and komi, as shown in Fig. 5 and 6.
Against Fuego, one extra handicap stone is measured to be worth approximately
70 Elo points and 12 points on the board. (The effect of one handicap stone would
be larger in self-play.)

Most experiments were done with a constant number of playouts to improve
the accuracy of the Elo estimates. We also measured performance with fixed total
time (15 minutes per game plus 3 seconds/move byoyomi) and a variable number

16 We could not go beyond 8,000,000 playouts/move because of the resource require-
ments for 5000 games at more than 9 hours per game each.



-600

-400

-200

0

200

400

E
lo

1 2 4 8 16 22
cores

vs. self n/2 cores
vs. Fuego

Fig. 7: Self-play scalability (fixed time).

-800

-600

-400

-200

0

200

400

600

800

E
lo

15.6 31.3 62.5 125 250 500

playouts (thousands)

vs. self n/2 sims
vs. Fuego

Fig. 8: Self-play scalability (fixed sims).

of cores for Pachi.17 The timed experiments in Fig. 7 demonstrate excellent
scalability up to 22 cores18.

Figures 7 and 8 show inflation of self-play experiments compared to games
against a different reference opponent. Scalability results are most often reported
only in self-play. This is in our opinion very misleading. Self-play scalability is
far easier than scalability against an opponent that uses different algorithms, for
example +380 Elo instead of +150 Elo when doubling from 1 to 2 cores. The
same effect is also visible in the distributed mode as shown in Fig. 10, where the
128-machine version is 340 Elo stronger than the 2-machine version in self-play
but only 200 Elo stronger against Fuego. Given the availability of at least two
strong open-source Go programs (Pachi and Fuego), we strongly encourage other
teams to report scalability results against other opponents rather than self-play.

Fig. 9 shows the strength speedup relative to the number of cores, i.e. the
increase in playing time needed to achieve identical strength play [6] [20]. The
tests are done using the “high-end” scenario, but Pachi uses a variable number
of cores. The speedup is perfect (within the error margin) up to 22 cores — for
22 cores the measured speedup is 21.7± 0.5.

5.2 Cluster Parallelization

The MCTS cluster parallelization is still far from being clearly solved. Pachi fea-
tures elaborate support for distributed computations with information exchange
between the nodes, but it still scales much slower when multiplying the num-
ber of nodes rather than processors with a low-latency shared tree. The cluster
version with 64 nodes is about 3 stones stronger than the single machine version.

Node statistics are sent using TCP/IP from slave machines to one master
machine, merged in the master, and the merged results are sent by the mas-
ter back to the slaves. Only updates relative to the previously sent results are

17 Unfortunately Fuego lost on time far too frequently even with byoyomi, so only Pachi
used fixed time and Fuego used constant number of playouts.

18 The timed experiments were run on 24-cores machines, with at least 2 cores reserved
for other processes.



1

2

4

8

16

22

sp
ee

du
p

1 2 4 8 16 22
cores

Fig. 9: Strength speedup.

-200

-100

0

100

200

300

400

500

E
lo

2 4 8 16 32 64 128

machines

vs. self 1 mach.
vs. Fuego

Fig. 10: Self-play scalability in the dis-
tributed mode.

exchanged, to minimize the network traffic. The network is standard 1 Gb/s
Ethernet, so it was critical to optimize it. Statistics are sent only for the first n
levels in the tree. Surprisingly we found the value n = 1 to be optimal (i.e. only
the information about the immediate move candidates is shared). Understanding
this should be the subject of further study. Mogo [3] goes up to n = 3 but it
uses a high performance network (such as Myrinet or InfiniBand) whereas Pachi
uses standard Ethernet.

The distributed protocol was designed to be extremely fault tolerant. Nodes
can be shut down arbitrarily. The Pachi processes run at the lowest possible
priority and can be preempted at any time.

The master sums the contributions of all slaves and plays the move most
popular among them. In timed games, the master plays when more than half of
the slaves indicate that they are willing to play now, or when the time runs out.
In experiments with fixed number of playouts, the master plays when half of the
slaves have reached their threshold, or when the total number of playouts from
all slaves reaches a global threshold. These two tests can trigger quite differently
in the presence of flaky slaves. We have used the former method for all the
experiments reported here, but the latter method improves scalability further.

Virtual loss [6] aims to spread parallel tree descents — a virtual lost simula-
tion is added to each node visited during the descent and removed again in the
update phase. We have found that cluster parallelization is significantly more
efficient if multiple lost simulations are added; we use n = 6. This encourages dif-
ferent machines to work on different parts of the tree, but increasing exploration
by multiple virtual losses slighly improves the single machine case as well.

To further encourage diversity among machines, we introduced the concept
of virtual win. Each node is given several virtual won simulations in a single
slave (if the node number modulo number of slaves equals the slave number),
therefore different nodes are encouraged to work on different parts of the tree,
this time in a deterministic manner. We use a different number of virtual wins



for children of the root node (n = 30) and for other nodes (n = 5). We also
tried to use losses instead of wins; the results were similar so we kept using wins
to avoid confusion with the quite different concept of virtual loss. Virtual losses
encourage diversity between threads on a single machine; virtual wins encourage
diversity between machines.

Fig. 4 shows that virtual wins measurably improved scalability in distributed
mode. Going from 2 to 64 machines improved strength by 160 Elo without virtual
win and by 200 Elo with virtual win (compare the lines for komi −22.5 and
komi −50). Distributed Depth-First UCT [23] probably performs better but it is
significantly more complex to implement, while multiple virtual loss and virtual
win only require a few lines of code.

Fig. 4 also shows that distributed scalability for 9× 9 games is harder than
for 19×19 games, confirming reports by the Mogo team [21]. The average depth
of the principal variation was measured as 28.8 on 9 × 9 with 4 minutes total
time per game, and 14.7 on 19× 19 with 29 minutes total time per game.

6 Overall Performance

Pachi’s primary venue for open games with the members of the public is the KGS
internet Go server [19]. Instances running with 8 threads on Intel i7 920 (hyper-
threading enabled) and 6 GiB of RAM can hold a solid 1-dan rank; a cluster of
64 machines with 22 threads each is ranked as 3-dan. (The top program on KGS
“Zen” has the rank of 5-dan.) Distributed Pachi regularly participates in the
monthly KGS tournaments [22], usually finishing on the second or third place,
but also winning occasionally, e.g. in the August 2011 KGS Bot Tournament.

The cluster Pachi participated in the Human vs. Computer Go Competition
at SSCI 2011, winning a 7-handicap 19× 19 match against Zhou Junxun 9-dan
professional [16]. Zhou Junxun commented that Pachi played on a professional
level when killing an invading white group (the bulk of the game). In the Eu-
ropean Go Congress 2011 Computer Go tournament [10], distributed Pachi tied
with Zen for the first place in the 19× 19 section.

In addition to algorithmic improvements, an enormous amount of tuning of
over 80 different parameters also significantly improved Pachi’s strength. Unfor-
tunately, at most 1 in 10 experiments result in positive gain and improvements
become harder as the program gets stronger. For example, multiple virtual loss
and virtual win initially provided a significant performance boost (30 Elo each),
but after other unrelated algorithmic improvements, their combined effect is now
under 10 Elo per doubling.

For this reason, we have also omitted full graphs of performance based on
the values of various constants but describe just the optimal values. While we
have originally explored the space of each parameter, resource limitations do not
allow us to re-measure the effect of most parameters after each improvement.
We can only make sure we remain in the local optimum in all dimensions.



7 Conclusion

We have described a modern open source19 Computer Go program “Pachi”.
It features modular architecture, small and lean codebase, and top-performing
implementation of the Monte Carlo Tree Search with RAVE and many domain-
specific heuristics. The program continues to demonstrate its strength by regu-
larly playing on the internet, with both other programs and people.

We have also introduced various extensions of the previously published meth-
ods. Our adaptive time control scheme allows Pachi to spend most time on the
most crucial moves. Dynamic komi allows the program to efficiently cope with
handicap games. A new way to apply the criticality statistic enhances the tree
search performance. Pachi scales well thanks to multiple-simulation virtual loss
and to our distributed computation algorithm including virtual win.

7.1 Acknowledgements

We have borrowed useful implementation tricks and interesting ideas from other
open source programs Fuego, GNU Go and libego [15]. Jan Hric offered use-
ful comments on early versions of the paper. We would also like to thank the
anonymous reviewers for their helpful suggestions.

References

1. Baudǐs, P.: Balancing MCTS by dynamically adjusting komi value. ICGA Journal,
In review.

2. Baudǐs, P.: Information Sharing in MCTS. Master’s thesis, Faculty of Mathematics
and Physics, Charles University Prague (2011)

3. Bourki, A., Chaslot, G., Coulm, M., Danjean, V., Doghmen, H., Hérault, T., Hoock,
J.B., Rimmel, A., Teytaud, F., Teytaud, O., Vayssière, P., Yu, Z.: Scalability and
Parallelization of Monte-Carlo Tree Search. In: The International Conference on
Computers and Games 2010. Kanazawa, Japon (2010), http://hal.inria.fr/

inria-00512854/en/
4. Bump, D., Farneback, G., Bayer, A., et al.: GNU Go, http://www.gnu.org/

software/gnugo/gnugo.html
5. Chaslot, G., Fiter, C., Hoock, J.B., Rimmel, A., Teytaud, O.: Adding expert knowl-

edge and exploration in Monte-Carlo Tree Search. In: van den Herik, H., Spronck,
P. (eds.) Advances in Computer Games, Lecture Notes in Computer Science, vol.
6048, pp. 1–13. Springer Berlin / Heidelberg (2010)

6. Chaslot, G., Winands, M., van den Herik, H.: Parallel Monte-Carlo Tree Search.
In: van den Herik, H., Xu, X., Ma, Z., Winands, M. (eds.) Computers and Games,
Lecture Notes in Computer Science, vol. 5131, pp. 60–71. Springer Berlin / Hei-
delberg (2008)

7. Chaslot, G., Winands, M., van den Herik, J.H., Uiterwijk, J., Bouzy, B.: Pro-
gressive strategies for Monte-Carlo Tree Search. In: Joint Conference on Informa-
tion Sciences, Salt Lake City 2007, Heuristic Search and Computer Game Playing
Session (2007), http://www.math-info.univ-paris5.fr/~bouzy/publications/
CWHUB-pMCTS-2007.pdf

19 The program source can be downloaded at http://pachi.or.cz/.



8. Coulom, R.: Criticality: a Monte-Carlo heuristic for Go programs. Invited talk, Uni-
versity of Electro-Communications, Tokyo, Japan (2009), http://remi.coulom.

free.fr/Criticality/

9. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego — an open-source
framework for board games and Go engine based on Monte-Carlo Tree Search.
IEEE Transactions on Computational Intelligence and AI in Games 2:4, 259–270
(2010)

10. European Go Federation: European Go Congress 2011 in Bordeaux, Computer Go
(2011), http://egc2011.eu/index.php/en/computer-go

11. Free Software Foundation: GNU General public licence (1991), http://www.gnu.
org/licenses/gpl-2.0.html

12. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns
in Monte-Carlo Go. Research Report RR-6062, INRIA (2006), http://hal.inria.
fr/inria-00117266/en/

13. Graepel, T., Goutrié, M., Krüger, M., Herbrich, R.: Learning on graphs in the game
of Go. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) Artificial Neural Networks —
ICANN 2001, Lecture Notes in Computer Science, vol. 2130, pp. 347–352. Springer
Berlin / Heidelberg (2001)

14. Huang, S.C., Coulom, R., Lin, S.S.: Time management for monte-carlo tree search
applied to the game of go. In: Technologies and Applications of Artificial Intelli-
gence (TAAI), 2010 International Conference on. pp. 462 –466 (nov 2010)

15.  Lukasz Lew: libEGO — Library of effective Go routines, https://github.com/

lukaszlew/libego

16. National University of Taiwan: Human vs. Computer Go competition, SSCI 2011
symposium series on computational intelligence (2011), http://ssci2011.nutn.
edu.tw/result.htm

17. Odom, G., Ay, A., Verstraeten, S., Dinerstein, A.: Kogo’s joseki dictionary, http:
//waterfire.us/joseki.htm

18. Pellegrino, S., Hubbard, A., Galbraith, J., Drake, P., Chen, Y.P.: Localizing search
in Monte-Carlo Go using statistical covariance. ICGA Journal 32:3, 154–160 (2009)

19. Schubert, W.: KGS Go Server, http://gokgs.com/
20. Segal, R.: On the scalability of parallel uct. In: van den Herik, H., Iida, H., Plaat,

A. (eds.) Computers and Games, Lecture Notes in Computer Science, vol. 6515,
pp. 36–47. Springer Berlin / Heidelberg (2011)

21. Teytaud, O.: Parallel algorithms (2008), http://groups.google.com/group/

computer-go-archive/msg/d1d68aaa3114b393

22. Wedd, N.: Computer Go tournaments on KGS (2005–2011), http://www.

weddslist.com/kgs/index.html

23. Yoshizoe, K., Kishimoto, A., Kaneko, T., Yoshimoto, H., Ishikawa, Y.: Scalable
distributed Monte-Carlo Tree Search. In: Borrajo, D., Likhachev, M., Lopez, C.L.
(eds.) SOCS. pp. 180–187. AAAI Press (2011)


