Data-Mining Go Games

[Submitted to IEEE TCAIG]

Petr Baudis <pasky@ucw,cz> Joe Moudrik <j.moudrik@gmail.com> MFF, Prague, 2010

Table of Contents

Game of Go Problem Setup Resources & Methods Practical Results

Game of Go

- Ancient Asian game: square grid board, black&white stones
- Goal is surrounding most territory and capturing enemy stones
- Many professional players in Asia well known by amateurs

Example Game

White: territory

Black: aggressive

Side: Safe territory

Center: Hard to make territory, fight zone

Go Styles

- How the player steers the game, the kind of played moves (defensive/offensive, simple/complicated, ...)
- Very hard to define, nuanced and ambiguous in the literature ("thick", "orthodox", "nimble"?!)
- Motivation:
 - Fun for players to find out style
 - Good studying guide
 - Learning other things than style

Go Strength

- Beginner: 30kyu ... 1kyu, 1dan ... 9dan :Expert
- Professionals: 1pro ... 9pro, equiv. to ~7d..9d
- Regular players distributed normally at around ~4kyu
- Correspondence to probability of win
 - d=0 means 1/2 chance of win
 - d=1 means 2/3 chance of stronger win
- (Elo rating scale)

Prior Data Mining

- Pattern-based program play
- Frequency of moves:
 In situation X, most played pro moves are A, B, C, D, then sometimes E; the followups are at ...
- Situation: Arbitrary board segment
- Fast matching: schemes based on Zobrist hashing

Methodology

Go Game Corpus

• GoGoD 2009

- ~55000 games over 400 year time span
- Professional-level games (simil. strength)
- Styles research: Sample ~20 well-known current professionals, explore main differentiating factors
- Go Teaching Ladder
 review archive

- ~7500 recent games 30kyu..4dan
- Strength research: Differentiating factors

Input: Patterns

- Extracting **patterns** for each player:
 - Combination of **features** of chosen move
 - Edge distance, last move distance, ...
 - Spatial feature: Hash of stone configuration in given gridcular radius
- Specificity tradeoff
- Implemented "patternscan" engine within the Pachi go framework

Input: Pattern Vectors

- Take n(=500) patterns most frequent in the corpus
- Build [-1,1]⁵⁰⁰ vectors with per-subject frequencies
- Rescaling emphasizes different pattern types

Output: Statistical Exploration

- No prior knowledge, pure internal analysis
- Principal Component Analysis
 - Find eigenvectors of the data matrix base

 Decomposes data to main linear dependencies

Sociomaps

- Spread players to a 2D plane, pretty pictures!
- Layout keeps dataset ordering

Output: Classifiers

- Assign input *P* classification *O*
- Prior classifications by expert knowledge
- k-Nearest Neighbors
 - Weighted average of nearest patterns, weight exponentially decreasing with distance
- Neural Networks
 - Three-layer sigmoid RPROP
- Naive Bayes Classifier

Results

Go Strength Results

- GTL corpus, split by ranks
- One vector per rank, output is rank [-3,30]
- PCA shows very strong correlation r=0.979
- kNN over 15 games: +-6 ranks, 80: +- 4 ranks

Go Style Analysis

- GoGoD corpus, split by players
- One vector per player, output four style aspects plus "playing era" (median game year)
 - Territoriality, orthodoxity, aggressiveness, thickness – marks in [1,10]
- Expert information style marks for 20 current pros by three strong players (3p, 7d, 4d)
 - Styles partially inter-correlated, standard error less than 1

Per-Player PCA

1	Takemiya Masaki	Yuki Satoshi 'Fujisawa Hideyuki	Sakata Elo
			Cho Chikun
		Sakata GioMasaki	
		Otake Hideo	Yoda Norime
		Kato Masao	
15	L		Ma Xiaochur
	Miyazawa Goro		
			Kobayashi K
	Rui Naiwei		
		Cho U	Takemiya Ma Miyazawa Gi
			Kette Marsao
	Yi Ch'ang-ho		
	O Meien		
			Otake Hideo
a	-	Miyazawa Goro	Takan Shinii
			Fujisawa. Hid
	Luo Xibe		
		O Meien	
		C MCL	Gu Li Yi Ch'ang-ho
	Yi Se-tol		
		Hui Naiwei	
			Yi Se-tol
	Takao Shinji	Hane Naoki	Chen Yanve
3.5	Kobayashi Koichi	-	
			Hane Naoki
	Yoda Norimoto	#POWSMB16cichi	
		Glad-Chikun	Rui Nanwei
	Kato Masao	Luo Xihe	Yuki Satoshi
	Yuki Satoshi		
	Hane Naoki	Yoda Norimoto	
	Ma Saochun	Yi Se-tol	
	Chen Yaoye Cho U		
	Otake Hideo	Chen Yaoye	
-1	Sakata Eio	Ma Xiaochun	Cho U
D	.45 0.	.19 0.0	245
	PCA dir	n. weights	

PCA – Style Correspondence

• Better correspondence: vector post-processing

TABLE IV COVARIANCE MEASURE OF PCA AND PRIOR INFORMATION

Eigenval.	τ	ω	α	θ	Year
0.4473697	-0.530	0.323	0.298	-0.554	0.090
0.1941057	-0.547	0.215	0.249	-0.293	-0.630
0.0463189	0.131	-0.002	-0.128	0.242	-0.630
0.0280301	-0.011	0.225	0.186	0.131	0.067
0.0243231	-0.181	0.174	-0.032	-0.216	0.352
0.0180875	-0.364	0.226	0.339	-0.136	0.113
0.0138478	-0.194	-0.048	-0.099	-0.333	0.055
0.0110575	-0.040	-0.254	-0.154	-0.054	-0.089
0.0093587	-0.199	-0.115	0.358	-0.234	-0.028
0.0084930	0.046	0.190	0.305	0.176	0.089

PCA Characteristic Patterns

PCA – Style Sociomap

- Layout: Experts
- Countours: PCA1+PCA2
- Mostly smooth
- Gu Li **x** Rui Naiwei

Style Classification

- Guessing four style dimensions [1,10]
- Joint: Different dimensions kNN, NN

Classifier	τ	ω	α	θ	Mean	Cmp
Joint classifier1	4.04	5.25	3.52	3.05	3.960	2.97
Neural network	4.03	6.15	3.58	3.79	4.388	2.68
k-NN ($k = 2$)	4.08	5.40	4.77	3.37	4.405	2.67
k-NN ($k = 3$)	4.05	5.58	5.06	3.41	4.524	2.60
k-NN ($k = 1$)	4.52	5.26	5.36	3.09	4.553	2.59
k-NN ($k = 4$)	4.10	5.88	5.16	3.60	4.684	2.51
Naive Bayes	4.48	6.90	5.48	3.70	5.143	2.29
Random class.	12.26	12.33	12.40	10.11	11.776	1.00

TABLE VIII COMPARISON OF STYLE CLASSIFIERS

Conclusions

- Clear correspondence in the dataset!
- More training data needed
- More factors can be investigated
- Classificators mildly successful, need more work
- Real-world classification application would be nice

Q&A

http://pasky.or.cz/~pasky/go/ http://www.goweb.cz/