
TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

On Move Pattern Trends
in Large Go Games Corpus

Petr Baudǐs, Josef Mouďrı́k

Abstract—We process a large corpus of game records of the
board game of Go and propose a way to extract per-player sum-
mary information on played moves. We then apply several basic
data-mining methods on the summary information to identify the
most differentiating features within the summary information,
and discuss their correspondence with traditional Go knowledge.
We show mappings of the features to player attributes like
playing strength or informally perceived “playing style” (such as
territoriality or aggressivity), and propose applications including
seeding real-work ranks of internet players, aiding in Go study,
or contribution to discussion within Go theory on the scope of
“playing style”.

Index Terms—board games, go, data mining, pattern recongi-
tion, player strength, playing style

I. I NTRODUCTION

T HE field of Computer Go usually focuses on the problem
of creating a program to play the game, finding the best

move from a given board position. We will make use of one
method developed in the course of such research and apply
it to the analysis of existing game records with the aim of
helping humans to play the game better instead.

Go is a two-player full-information board game played on
a square grid (usually19 × 19 lines) with black and white
stones; the goal of the game is to surround the most territory
and capture enemy stones. We assume basic familiarity with
the game.

Many Go players are eager to play using computers (usually
over the internet) and review games played by others on com-
puters as well. This means that large amounts of game records
are collected and digitally stored, enabling easy processing of
such collections. However, so far only little has been done with
the available data — we are aware only of uses for simple
win/loss statistics (TODO: KGS Stats, KGS Analytics, Pro
Go Rating) and ”next move” statistics on a specific position
(TODO: Kombilo, Moyo Go Studio).

We present a more in-depth approach — from all played
moves, we devise a compact evaluation of each player. We then
explore correlations between evaluations of various players
in light of externally given information. This way, we can
discover similarity between moves characteristics of players
with the same playing strength, or discuss the meaning of the
”playing style” concept on the assumption that similar playing
styles should yield similar moves characteristics.

P. Baudǐs is student at the Faculty of Math and Physics, Charles University,
Prague, CZ, and also does some of his Computer Go research as an employee
of SUSE Labs Prague, Novell CZ.

J. Mouďrı́k is student at the Faculty of Math and Physics, Charles University,
Prague, CZ.

II. DATA EXTRACTION

As the input of our analysis, we use large collections of
game records1 organized by player names. In order to generate
the required compact description of most frequently played
moves, we construct a set ofn most occuring patterns (top
patterns) across all players and games from the database.2

For each player, we then count how many times was each
of thosen patterns played during all his games and finally
assign him apattern vector~p of dimensionn, with each
dimension corresponding to the relative number of occurences
of a given pattern (relative with respect to player’s most played
top pattern). Using relative numbers of occurences ensures
that each dimension of player’spattern vectoris scaled to
range[0, 1] and therefore even players with different number
of games in the database have comparablepattern vectors.

A. Pattern Features

We need to define how to compose the patterns we use to
describe moves. However, there are some tradeoffs – overly
general descriptions carry too few information to discern var-
ious player attributes; too specific descriptions gather too few
specimen over the games sample and the vector differences
are not statistically significant.

We have chosen an intuitive and simple approach inspired
by pattern features used when computing ELO ratings for
candidate patterns in Computer Go play. [?] Each pattern is
a combination of severalpattern features(name–value pairs)
matched at the position of the played move. We use these
features:

• capture move flag
• atari move flag
• atari escape flag
• contiguity-to-last flag — whether the move has been

played in one of 8 neighbors of the last move
• contiguity-to-second-last flag
• board edge distance — only up to distance 4
• spatial pattern — configuration of stones around the

played move

The spatial patterns are normalized (using a dictionary) tobe
always black-to-play and maintain translational and rotational
symmetry. Configurations of radius between 2 and 9 in the
gridcular metric3 are matched.

1We use the SGF format (TODO) in our implementation.
2We usen = 500 in our analysis.
3The gridcular metric d(x, y) = |δx|+ |δy|+max(|δx|, |δy|) defines a

circle-like structure on the Go board square grid. [?]

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

B. Implementation

We have implemented the data extraction by making use
of the pattern features matching implementation within the
Pachi go-playing program (TODO). We extract information
on players by converting the SGF game records to GTP
(TODO) stream that feeds Pachi’spatternscan engine
which outputs a singlepatternspec(string representation of
the particular pattern features combination) per move.

III. D ATA M INING

To assess the properties of gatheredpattern vectorsand their
influence on playing styles, we have processes the data using
a few basic data minining techniques.

The first two methods (analytic) rely purely on data gathered
from the game collection and serve to show internal structure
and correlations within the data set.

Principal component analysis finds orthogonal vector com-
ponents that have the largest variance. Reversing the process
can indicate which patterns correlate with each component.
Additionally, PCA can be used as a vector-preprocessing
for methods that are (negatively) sensitive topattern vector
component correlations.

A second method – Kohonen maps – is based on the
theory of self-organizing maps of abstract units (neurons)that
compete against each other for the representation of the input
space. Because neurons in the network are organized in a
two-dimensional plane, the trained network virtually spreads
vectors to the 2D plane, allowing for simple visualization of
clusters of players with similar “properties”.

Furthermore, we have used twoclassificationmethods that
assign eachpattern vector ~P some additional data (output
vector ~O), representing e.g. information about styles, player’s
strength or even a country of origin. Initially, the methodsmust
be nonetheless calibrated (trained) on some expert or prior
knowledge, usually in the form of pairs ofreference pattern
vectorsand theiroutput vectors.

Moreover, the reference set can be divided into training
and testing pairs and the methods can be compared by the
square error on testing data set (difference ofoutput vectors
approximated by the method and their real desired value).
k-Nearest Neighbor [1] classifier (the first method) approx-

imates ~O by composing theoutput vectorsof k reference
pattern vectorsclosest to~P .

The other classifier is based on a multi-layer feed-forward
Artificial Neural Network: the neural network can learn corre-
lations between input and output vectors and generalize the
“knowledge” to unknown vectors; it can be more flexible
in the interpretation of different pattern vector elementsand
discern more complex relations than the kNN classifier, but
e.g. requires larger training sample.

A. Principal Component Analysis

We use Principal Component AnalysisPCA [2] to reduce
the dimensions of thepattern vectorswhile preserving as much
information as possible.

Briefly, PCA is an eigenvalue decomposition of a covari-
ance matrix of centeredpattern vectors, producing a linear

mappingo from n-dimensional vector space to a reducedm-
dimensional vector space. Them eigenvectors of the original
vectors’ covariance matrix with the largest eigenvalues are
used as the base of the reduced vector space; the eigenvectors
form the transformation matrixW .

For each originalpattern vector ~pi, we obtain its new
representation~ri in the PCA base as shown in the following
equation:

~ri = W · ~pi (1)

The whole process is described in the Algorithm 1.

Algorithm 1 PCA – Principal Component Analysis
Require: m > 0, set of playersR with pattern vectorspr

~µ← 1/|R| ·
∑

r∈R ~pr
for r ∈ R do

~pr ← ~pr − ~µ
end for
for (i, j) ∈ {1, ..., n} × {1, ..., n} do
Cov [i, j]← 1/|R| ·

∑

r∈R ~pri · ~prj
end for
Compute Eigenvalue Decomposition ofCov matrix
Getm largest eigenvalues
Most significant eigenvectors ordered by decreasing eigen-
values form the rows of matrixW
for r ∈ R do
~rr ←W~pr

end for

We will want to find dependencies between PCA dimensions
and dimensions of some prior knowledge (player rank, style
vector). For this, we use the well-knownPearson’sχ2 test
[3]; the test yields the probability of a null hypothesis that
two distributions are statistically independent, we will instead
use the probability of the alternative hypothesis that theyare
in fact dependent.

TODO: Chi-square computation.

B. Kohonen Maps

Kohonen map is a self-organizing network with neurons
organized in a two-dimensional plane. Neurons in the map
compete for representation of portions of the input vector
space. Each neuron~n represents a vector and the network
is trained so that the neurons that are topologically close tend
to represent vectors that are close as well.

First, a randomly initialized network is sequentially trained;
in each iteration, we choose a random training vector~t and
find the neuron~w that is closest to~t in Euclidean metric (we
call ~w a winner).

We then adapt neuronsn from the neighbourhood of~w
employing an equation:

~n = ~n+ α · Influence(~w,~n) · (~t− ~n) (2)

whereα is a learning parameter, usually decreasing in time.
Influence() is a function that forces neurons to spread. Such
function is usually realised using a mexican hat function or
a difference-of-gaussians (see [?] for details). The state of

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

the network can be evaluated by calculating mean square
difference between each~t ∈ T and its correspondingwinner
neuron ~wt:

Error(N,T) =
∑

~t∈T

|~wt − ~t| (3)

Algorithm 2 Kohonen maps – training
Require: Set of training vectorsT , input dimensionD
Require: max number of iterationsM , desired errorE

N ← {~n|~n random,dim(~n) = D}
repeat
It ← It + 1
~t← PickRandom(T)
for all ~n ∈ N do
D[~n]← EuclideanDistance(~n,~t)

end for
Find ~w ∈ N so thatD[~w] <= D[~m], ∀~m ∈ N
for all ~n ∈ TopologicalNeigbors(N, ~w) do
~n← ~n+ α(It) · Influence(~w,~n) · (~t− ~n)

end for
until Error(N,T) < E or It > M

C. k-nearest Neighbors Classifier

Our goal is to approximate player’sstyle vector~S based
on their pattern vector~P . To achieve this, we require prior
knowledge ofreference style vectors(see section V-A).

In this method, we assume that similarities in players’
pattern vectorsuniformly correlate with similarities in players’
style vectors. We try to approximate~S as a weighted average
of style vectors~si of k players withpattern vectors~pi closest
to ~P . This is illustrated in the Algorithm 3. Note that the
weight is a function of distance and it is not explicitly defined
in Algorithm 3. During our research, exponentially decreasing
weight has proven to be sufficient.

Algorithm 3 k-Nearest Neighbors

Require: pattern vector~P , k > 0, set of reference playersR
for all r ∈ R do
D[r]← EuclideanDistance(~pr, ~P)

end for
N ← SelectSmallest(k,R,D)
~S ← ~0
for all r ∈ N do

~S ← ~S +Weight(D[r]) · ~sr
end for

D. Neural Network Classifier

As an alternative to the k-Nearest Neigbors algorithm (sec-
tion III-C), we have used a classificator based on feed-forward
artificial neural networks [?]. Neural networks (NN) are known
for their ability to generalize and find correlations and patterns
between input and output data. Neural network is an adaptive
system that must undergo a training period before it can be
reasonably used, similarly to the requirement of reference
vectors for the k-Nearest Neighbors algorithm above.

1) Computation and activation of the NN:Technically,
neural network is a network of interconnected computational
units called neurons. A feedforward neural network has a
layered topology; it usually has oneinput layer, one output
layer and an arbitrary number ofhidden layersinbetween.

Each neuroni is connected to all neurons in the previous
layer and each connection has its weightwij

The computation proceeds in discrete time steps. In the first
step, the neurons in theinput layerareactivatedaccording to
the input vector. Then, we iteratively compute output of each
neuron in the next layer until the output layer is reached. The
activity of output layer is then presented as the result.

The activationyi of neuroni from the layerI is computed
as

yi = f





∑

j∈J

wijyj



 (4)

whereJ is the previous layer, whileyj is the activation for
neurons fromJ layer. Functionf() is so-calledactivation
function and its purpose is to bound the outputs of neurons.
A typical example of an activation function is the sigmoid
function.4

2) Training: The training of the feed-forward neural net-
work usually involves some modification of supervised Back-
propagation learning algorithm. [?] We use first-order opti-
mization algorithm called RPROP [4].

Because thereference setis usually not very large, we have
devised a simple method for its extension. This enhancement
is based upon adding random linear combinations ofstyle and
pattern vectorsto the training set.

TODO: Tohle je puvodni napad?
As outlined above, the training set consists of pairs of

input vectors (pattern vectors) and desired output vectors (style
vectors). The training setT is then extended by adding the
linear combinations:

Tbase = {(~pr, ~sr)|r ∈ R} (5)

Text =

{

(~p,~s)

∣

∣

∣

∣

∣

∃D ⊆ R : ~p =
∑

d∈D

gd~pd, ~s =
∑

d∈D

gd~sd

}

(6)
TODO zabudovatgd dovnitr? wheregd, d ∈ D are random
coeficients, so that

∑

d∈D gd = 1. The training set is then
constructed as:

T = Tbase ∪ SomeFiniteSubset(Text) (7)

The network is trained as shown in Algorithm 4.
3) Architecture details:TODO num layers, num neurons,

..

E. Implementation

We have implemented the data mining methods as an open-
source framework “gostyle” [?], made available under the
GNU GPL licence. We use python for the basic processing
and most of the analysis; the MDP library [5] is used for
PCA analysis, Kohonen library [?] for Kohonen maps. The
neuron network classifier is using the libfann C library. [?]

4A special case of the logistic function, defined by the formulaσ(x) =
1

1+e
−(rx+k) ; parameters control the growth rate (r) and the x-position (k).

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

-1

-0.5

 0

 0.5

 1

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

fir
st

 d
im

.

rank (+k, -d)

Fig. 1. PCA of by-strength vectors

Algorithm 4 Training Neural Network
Require: Train setT , desired errore, max iterationsM
N ← RandomlyInitializedNetwork()
It ← 0
repeat
It ← It + 1
∆~w ← ~0
TotalError ← 0
for all (Input ,DesiredOutput) ∈ T do

Output ← Result(N, Input)
Error ← |DesiredOutput −Output |
∆~w ← ∆~w +WeightUpdate(N,Error)
TotalError ← TotalError + Error

end for
N ← ModifyWeights(N,∆~w)

until TotalError < e or It > M

IV. STRENGTH ESTIMATOR

First, we have used our framework to analyse correlations
of pattern vectors and playing strength. Like in other com-
petitively played board games, Go players receive real-world
rating based on tournament games, and rank based on their
rating.56 The amateur ranks range from 30kyu (beginner) to
1kyu (intermediate) and then follows 1dan to 7dan (9dan in
some systems; top-level player). Multiple independent real-
world ranking scales exist (geographically based) and online
servers maintain their own user ranking; the difference canbe
up to several stones.

As the source game collection, we use Go Teaching Ladder
reviews7 [?] — this collection contains 7700 games of players
with strength ranging from 30k to 4d; we consider only even
games with clear rank information, and then randomly separate
770 games as a testing set. Since the rank information is
provided by the users and may not be consistent, we are
forced to take a simplified look at the ranks, discarding the

5Elo-like rating system [6] is usually used, corresponding to even win
chances for game of two players with the same rank, and about 2:3win
chance for stronger in case of one rank difference.

6Professional ranks and dan ranks in some Asia countries may be assigned
differently.

7The reviews contain comments and variations — we consider onlythe
actual played game.

differences between various systems and thus increasing error
in our model.8

First, we have created a single pattern vector for each rank,
from 30k to 4d; we have performed PCA analysis on the
pattern vectors, achieving near-perfect rank correspondence in
the first PCA dimension9 (figure 1).

In order to measure the accuracy of approximation of
strength by the first dimension, we have used theχ2 test,
yielding probabilityp = TODO that it is dependent on the
player strength. Using the eigenvector position directly for
classification of players within the test group yields MSE
TODO, thus providing reasonably satisfying accuracy.

To further enhance the strength estimator accuracy, we have
tried to train a NN classifier on our train set, consisting of
one(~p, rank) pair per player — we use the pattern vector for
activation of input neurons and rank number as result of the
output neuron. We then proceeded to test the NN on per-player
pattern vectors built from the games in the test set, yielding
MSE of TODO with TODO games per player on average.

V. STYLE ESTIMATOR

As a second case study for our pattern analysis, we inves-
tigate pattern vectors~p of various well-known players, their
relationships and correlations to prior knowledge to explore its
correlaction with extracted patterns. We look for relationship
between pattern vectors and perceived “playing style” and
attempt to use our classifiers to transform pattern vector~p
to style vector~s.

The source game collection is GoGoD Winter 2008 [?]
containing 55000 professional games, dating from the early
Go history 1500 years ago to the present. We consider only
games of a small subset of players (fig. I); we have chosen
these for being well-known within the players community and
having large number of played games in our collection.

A. Expert-based knowledge

In order to provide a reference frame for our style analysis,
we have gathered some expert-based information about various

8Since our results seem satisfying, we did not pursue to try another
collection

9The eigenvalue of the second dimension was four orders of magnitude
smaller, with no discernable structure revealed within the lower-order eigen-
vectors.

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

TABLE I
STYLE ASPECTS OFSELECTED PROFESSIONALS1

Player τ ω α θ

Yoda Norimoto 6.3± 1.7 4.3± 2.1 4.3± 2.1 3.3± 1.2

Yi Se-tol 5.3± 0.5 6.6± 2.5 9.3± 0.5 6.6± 1.2

Yi Ch’ang-ho2 7.0± 0.8 5.0± 1.4 2.6± 0.9 2.6± 1.2

Takemiya Masaki 1.3± 0.5 6.3± 2.1 7.0± 0.8 1.3± 0.5

Sakata Eio 7.6± 1.7 4.6± 0.5 7.3± 0.9 8.0± 1.6

Rui Naiwei 4.6± 1.2 5.6± 0.5 9.0± 0.8 3.3± 1.2

Otake Hideo 4.3± 0.5 3.0± 0.0 4.6± 1.2 3.6± 0.9

O Meien 2.6± 1.2 9.6± 0.5 8.3± 1.7 3.6± 1.2

Ma Xiaochun 8.0± 2.2 6.3± 0.5 5.6± 1.9 8.0± 0.8

Luo Xihe 7.3± 0.9 7.3± 2.5 7.6± 0.9 6.0± 1.4

Ishida Yoshio 8.0± 1.4 5.0± 1.4 3.3± 1.2 5.3± 0.5

Gu Li 5.6± 0.9 7.0± 0.8 9.0± 0.8 4.0± 0.8

Cho U 7.3± 2.4 6.0± 0.8 5.3± 1.7 6.3± 1.7

Cho Chikun 9.0± 0.8 7.6± 0.9 6.6± 1.2 9.0± 0.8

Yuki Satoshi 3.0± 1.0 8.5± 0.5 9.0± 1.0 4.5± 0.5

Yamashita Keigo 2.0± 0.0 9.0± 1.0 9.5± 0.5 3.0± 1.0

Takao Shinji 5.0± 1.0 3.5± 0.5 5.5± 1.5 4.5± 0.5

Miyazawa Goro 1.5± 0.5 10± 0 9.5± 0.5 4.0± 1.0

Kobayashi Koichi 9.0± 1.0 2.5± 0.5 2.5± 0.5 5.5± 0.5

Kato Masao 2.5± 0.5 4.5± 1.5 9.5± 0.5 4.0± 0.0

Hane Naoki 7.5± 0.5 2.5± 0.5 4.0± 0.0 4.5± 1.5

Go Seigen 6.0± 2.0 9.0± 1.0 8.0± 1.0 5.0± 1.0

Fujisawa Hideyuki 3.5± 0.5 9.0± 1.0 7.0± 0.0 4.0± 0.0

Chen Yaoye 6.0± 1.0 4.0± 1.0 6.0± 1.0 5.5± 0.5

1 Including standard deviation. Only players where we got at least two out
of tree answers are included.

2 We consider games only up to year 2004, since Yi Ch’ang-ho was prominent
representative of a balanced, careful player until then, but is regarded to have
altered his style significantly afterwards.

traditionally perceived style aspects. This expert-basedknowl-
edge allows us to predict styles of unknown players based
on the similarity of their pattern vectors, as well as discover
correlations between styles and proportions of played patterns.

Experts were asked to mark each style aspect of the given
players on the scale from 1 to 10. The style aspects are defined
as shown:

Styles
Style 1 10

Territoriality τ Moyo Territorial
Orthodoxityω Classic Novel
Aggressivityα Calm Figting

Thicknessθ Safe Shinogi

Averaging this expert based evaluation yieldsreference style
vector~sr (of dimension4) for each playerr from the set of
reference playersR.

Three high-level Go players (Alexander Dinerstein 3-pro,
Motoki Noguchi 7-dan and V́ıt Brunner 4-dan) have judged
style of the reference players. Mean standard deviation of the
answers is 0.952, making the data reasonably reliable, though
much larger sample would of course be more desirable. The
complete list of answers is in table I.

B. Style Components Analysis

We have looked at the three most significant dimensions of
the pattern data yielded by the PCA analysis (fig. 2). We have
again performendχ2–test between the three most significant
PCA dimensions and dimensions of the prior knowledge
style vectors to find correlations; the found correlations are
presented in table??. We also list the characteristic spatial
patterns of the PCA dimension extremes (table??).

It is immediately obvious that by far the most significant
vector corresponds very well to the player territoriality,10

confirming the intuitive notion that this aspect of style is the
one easiest to pin-point and also most obvious in the played
shapes and sequences (that can obviously aim directly at taking
secure territory or building center-oriented framework).

The other PCA dimensions are far less obvious — TODO.
Kohonen map view.

C. Style Classification

We then tried to apply the NN classifier with linear output
function on the dataset and that yielded Y (see fig. Z), with
MSE abcd.

VI. PROPOSEDAPPLICATIONS

We believe that our findings might be useful for many
applications in the area of Go support software as well as
Go-playing computer engines.

The style analysis can be an excellent teaching aid —
classifying style dimensions based on player’s pattern vector,
many study recommendations can be given, e.g. about the
professional games to replay, the goal being balancing under-
standing of various styles to achieve well-rounded skill set.
This was also our original aim when starting the research and
a user-friendly tool based on our work is now being created.

We hope that more strong players will look into the style
dimensions found by our statistical analysis — analysis of
most played patterns of prospective opponents might prepare
for the game, but we especially hope that new insights on
strategic purposes of various shapes and general human un-
derstanding of the game might be achieved by investigating
the style-specific patterns.

Classifying playing strength of a pattern vector of a player
can be used e.g. to help determine initial real-world ratingof
a player before their first tournament based on games played
on the internet; some players especially in less populated
areas could get fairly strong before playing their first real
tournament.

Analysis of pattern vectors extracted from games of Go-
playing programs in light of the shown strength and style
distributions might help to highlight some weaknesses and
room for improvements. (However, since correlation does
not imply causation, simply optimizing Go-playing programs
according to these vectors is unlikely to yield good results.)
Another interesting applications in Go-playing programs might

10Cho Chikun, perhaps the best-known super-territorial player, is not well
visible in the cluster, but he is positioned just below−0.5 on the first
dimension.

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

-1

-0.5

 0

 0.5

 1

0.44 0.18 0.074

dimensions

YodaNorimoto

YodaNorimoto

YodaNorimoto

YodaNorimoto

YodaNorimoto

YiSe-tol

YiSe-tol

YiSe-tol

YiSe-tol

YiSe-tol

YiCh'ang-ho

YiCh'ang-ho

YiCh'ang-ho

YiCh'ang-ho

YiCh'ang-ho

TakemiyaMasaki

TakemiyaMasaki

TakemiyaMasaki

TakemiyaMasaki

TakemiyaMasaki

SakataEio

SakataEio

SakataEio

SakataEio

SakataEio

RuiNaiwei

RuiNaiwei

RuiNaiwei

RuiNaiwei

RuiNaiwei

OtakeHideo

OtakeHideo

OtakeHideo

OtakeHideo

OtakeHideo

OMeien

OMeien

OMeien

OMeien

OMeien

MaXiaochun

MaXiaochun

MaXiaochun

MaXiaochun

MaXiaochun

LuoXihe

LuoXihe

LuoXihe

LuoXihe

LuoXihe

IshidaYoshio

IshidaYoshio

IshidaYoshio

IshidaYoshio

IshidaYoshio

GuLi

GuLi

GuLi

GuLi

GuLi

ChoU

ChoU

ChoU

ChoU

ChoU

ChoChikun

ChoChikun

ChoChikun

ChoChikun

ChoChikun

YukiSatoshi

YukiSatoshi

YukiSatoshi

YukiSatoshi

YukiSatoshi

YamashitaKeigo

YamashitaKeigo

YamashitaKeigo

YamashitaKeigo

YamashitaKeigo

TakaoShinji

TakaoShinji

TakaoShinji

TakaoShinji

TakaoShinji

MiyazawaGoro

MiyazawaGoro

MiyazawaGoro

MiyazawaGoro

MiyazawaGoro

KobayashiKoichi

KobayashiKoichi

KobayashiKoichi

KobayashiKoichi

KobayashiKoichi

KatoMasao

KatoMasao

KatoMasao

KatoMasao

KatoMasao

HaneNaoki
HaneNaoki

HaneNaoki

HaneNaoki

HaneNaoki

GoSeigen

GoSeigen

GoSeigen

GoSeigen

GoSeigen

FujisawaHideyuki

FujisawaHideyuki

FujisawaHideyuki

FujisawaHideyuki

FujisawaHideyuki

ChenYaoye

ChenYaoye

ChenYaoye

ChenYaoye

ChenYaoye

Fig. 2. PCA of per-player vectors

be strength adjustment; the program can classify the player’s
level based on the pattern vector from its previous games and
auto-adjust its difficulty settings accordingly to providemore
even games for beginners.

VII. C ONCLUSION

The conclusion goes here. We have shown brm and pro-
posed brm.

Since we are not aware of any previous research on this
topic and we are limited by space and time constraints, plenty
of research remains to be done. There is plenty of room
for further research in all parts of our analysis — different
methods of generating the~p vectors can be explored; other
data mining methods could be tried. It can be argued that many
players adjust their style by game conditions (Go development
era, handicap, komi and color, time limits, opponent) or
styles might express differently in various game stages. More
professional players could be consulted on the findings and
for style scales calibration. Impact of handicap games on by-
strength~p distribution should be investigated.

TODO: Future research — Sparse PCA

ACKNOWLEDGMENT

We would like to thank Radka “chidori” Hanečková for
the original research idea and X for reviewing our paper.
We appreciate helpful comments on our general methodology
by John Fairbairn, T. M. Hall, Robert Jasiek, František Mŕaz
and several GoDiscussions.com users. [?] Finally, we are very
grateful for detailed input on specific go styles by Alexander
Dinerstein, Motoki Noguchi and V́ıt Brunner.

REFERENCES

[1] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[2] I. Jolliffe, Principal Component Analysis. Springer, New York, 1986.
[3] R. L. Plackett, “Karl pearson and the chi-squared test,”International

Statistical Review, vol. 51, no. 1, pp. 59–72, 1983.
[4] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-

propagation learning: The rprop algorithm,” inIEEE INTERNATIONAL
CONFERENCE ON NEURAL NETWORKS, 1993, pp. 586–591.

[5] Z. Tiziano, W. Niko, W. Laurenz, and B. Pietro, “Modular toolkit for
data processing (mdp): a python data processing framework,”Frontiers
in Neuroinformatics, vol. 2, 2008.

[6] A. Cieply et al., “Egf ratings system — system descrip-
tion.” [Online]. Available: http://www.europeangodatabase.eu/EGD
/EGF rating system.php

PLACE
PHOTO
HERE

Michael Shell Biography text here.

TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

John Doe Biography text here.

Jane DoeBiography text here.

