
Version Control Systems
Petr Baudis
pasky@suse.cz
SuSE Labs CZ

© December 11, 2003 Novell Inc.
2

Let's talk about...

What are we talking about (version control basics)
How various systems differ (version systems taxonomy)
Where are we now (current systems overview)
What are we working on (possible future trends)

© December 11, 2003 Novell Inc.
3

What are we trying to do?

Preserve development history
• Browse it
• Return to previous versions

Enable collaboration
• Multiple people can work at once
• Access to the bleeding-edge for users

Manage parallel development
• Branching and merging

© December 11, 2003 Novell Inc.
4

Revisions

revision =~ commit =~ changeset
Basic unit of the history
State of the project (file) at a particular moment
Has some identificator and description
Either per-file or for the whole tree

© December 11, 2003 Novell Inc.
5

Branches

branch =~ line of development =~ head
Project can have multiple “latest versions”

• Development vs. stable branches
• Experimental development efforts
• Personal staging area

Branches are easy to fork, harder to merge

© December 11, 2003 Novell Inc.
6

Revision Graph

Revisions in separate branches form a tree:

Some systems can express merges in the graph, making it
a DAG:

© December 11, 2003 Novell Inc.
7

Repositories

Database for all this
One of the most variant aspects

• Per-file history in custom format
• Tarballs with revisions
• SQL database

Need to access somehow
• Dedicated server
• Dumb transport
• Special access methods (SSH, WebDAV)

Version Control Taxonomy

© December 11, 2003 Novell Inc.
9

Development Model

Centralized development
• Traditional way of doing it
• Single canonical repository
• Most information not available locally

Distributed development
• Anyone can clone a repository and commit locally
• Usually, you have the history locally too
• More freedom for the developer

© December 11, 2003 Novell Inc.
10

Distributed Development

Pros:
• Independent parallel development
• Version control for your private forks
• Version control for your offline work

Cons:
• More complicated
• Can be confusing at first

© December 11, 2003 Novell Inc.
11

Distributing Your Work

•Push to a remote repository
•Let others pull from your repository
•Submit patches

Usually a central repository:
• Synchronization point for developers
• Following official development by users
• Commit policy either:

– Developers push at will (CVS-like)
– Project lead pulls from regular mortals and publishes

that as the central repository (Linus)

© December 11, 2003 Novell Inc.
12

Identifying Revisions

Numerical (1.234, 34568)
• Non-unique and non-stable in distributed systems
• External (if the revision is modified, ID stays the same)
• Human-friendly

Hash-based (46c9c209f359d2c72df9b1de2442d06a5208cb1a)
• Unique and stable in distributed systems
• Intrinsic (modified revision == different ID, where the “==”

is cryptographically strong)
• Human-unfriendly (at least at first)

Symbolic (fix-evil-bug)
• Non-unique
• External, human-friendly but it depends

© December 11, 2003 Novell Inc.
13

Primary graph objects

Vertices
• Primary objects are states (snapshots)
• Commit: make a new snapshot
• Edges are just references to previous vertices
• GIT, CVS

Edges
• Primary objects are changes (patches)
• Commit: add the new change to the current set of changes
• Vertices are just sets of changes
• Darcs, GNU Arch

Rarely clear-cut; systems with vertices still frequently rely
on edges for storage (delta optimization)

Current Systems Overview

© December 11, 2003 Novell Inc.
15

But we have CVS! ... right?

CVS is not the answer, CVS is the question.
No is the answer.

-- Theodore Ts'o

© December 11, 2003 Novell Inc.
16

Why the fuss?

Hey, but CVS is fine...

• Non-atomic commits

• Bad support for branches

• Cannot delete directories, rename files...

• Inefficient network communication

• And no distributed development

© December 11, 2003 Novell Inc.
17

Existing Tools

• Subversion
• Bitkeeper
• Darcs
• Monotone
• GIT/Cogito
• GNU Arch, Codeville, Mercurial, SVK, ...

Research vs. usability

© December 11, 2003 Novell Inc.
18

Subversion (SVN)

“CVS 2.0”
Quite stabilized and spreading widely
Cures most CVS design mistakes
Centralized and bad in merging

© December 11, 2003 Novell Inc.
19

Bitkeeper (bk)

The first popular distributed VCS
Proprietary and evil ;-)
Per-file history with revisions bundled to “changesets”
One repository per branch
Allegedly very good in merging
Large and somewhat arcane command set

• Interesting GUI tools

© December 11, 2003 Novell Inc.
20

Darcs

One of the two real-world OSS projects in Haskell
Quite exotic design
Focuses solely on the edges – at any point, you have a
combination of patches initially based on empty tree
Very appealing, but does not scale well

© December 11, 2003 Novell Inc.
21

Monotone

The “Monotone design school” - major influence on
several other systems
Focus on cryptographically strong accountability and
consistency checks
Very flexible thanks to Lua scripting
Very slow, mediocre UI

© December 11, 2003 Novell Inc.
22

Monotone Object Model

Used in Monotone, GIT, Mercurial, Codeville
Object database, objects identified by SHA1 hashes

tree 51d0cbe219f2f45bf3920441f09dfcc2744adb06

blob 6d723f902aaff806431d5e47916dadba7af18a37

blob 8b37aebb019ef91d773f12e2bf4c25eafcd9d355

blob 74cc012c2c62d05cb773c6dd4776af0fdc237dfb

commit b1ab75ff0164b0090f43ba55d2a70239ca2fdb7a

© December 11, 2003 Novell Inc.
23

GIT Goddamn Idiotic Truckload of sh*t

Heavily influenced by Monotone design
Simpler, faster, (sometimes) more elegant
Focus on speedy handling of large trees
“Directory cache” for fast manipulation of working copy
Objects stored per-file, but can be combined to very
efficient “pack files”
UNIX tool – collection of small focused commands
Usage ranging from reasonable to hopelessly complicated

• Cogito – frontend for GIT with strong focus on seamless UI
and painless+intuitive usage

Still not stabilized, currently not very portable
Goddamn Idiotic TruckloGoddamn Idiotic Truckload of

Sh*tdsfasdfsadfad of Sh*t

Future Trends

© December 11, 2003 Novell Inc.
25

Enhancing Our Own

Large competition
There are still people starting new ones
There are still people willing to use those new ones
(hopefully not so many of them anymore)
Plenty of duplicated effort
Things aren't as bad as they could be

• Vivid ideas communication (http://revctrl.org/)
• Reusing algorithms (eg. merging)

and tools (gitk, gitweb)
• Interoperation between VCSes (Tailor, custom gateways)

© December 11, 2003 Novell Inc.
26

Merging Problem

Currently usually the three-way merge
• Take base B (LCA in rev. graph) and to-be-merged A and C
• Get diffs B->A and B->C and combine them
• Where they interfere, generate a conflict

Can generate way too many conflicts
Can silently get it wrong – e.g. the criss-cross merge:

What base for Z? X or Y?
The answer is V, but that has different problems

X
Z

Y
V

© December 11, 2003 Novell Inc.
27

Weaves

Comes from SCCS, used in BK
• Probably significantly contributed to BK's good merging
• Likely to get more widespread with PCDV merge

Weave (or “interleaved deltas”)
• Normally, file history is stored as base revision(s), other

revisions are described by deltas against the bases
• Weave stores per-line history instead – whether a line was

unborn yet, present or deleted, for each line and revision
• Makes certain operations (“annotate”) very fast, but is

generally more complicated
• Does not blend well with Monotone-like systems
• Consequently, not so backup-friendly and harder to use

with dumb servers

© December 11, 2003 Novell Inc.
28

Precise CDV Merge

Initially developed for Codeville (still in development)
Algorithm works just on the merged revisions, no base sel.

• Turn “on” any lines added in either revision
• Turn “off” any lines deleted in either revision
• Conflicts = on/off from both revisions between

unchanged lines

Can be used for per-line changes as well as per-file
changes (i.e. merging file renames) (but other methods
are probably better for per-file changes)
Unfortunately a lot of border cases to solve
Still should work much better than three-way merge

© December 11, 2003 Novell Inc.
29

Cherrypicking Problem

Cherrypicking: When merging a branch, be able to choose
only certain changes, or exclude some changes
Monotone-like systems don't work well at all here
Weave properties might make cherrypicking easy

© December 11, 2003 Novell Inc.
30

Homework Problem

Professor wants to know your solution, built up properly -
not how you came to it
When forking a branch, manage it as a set of patches (also
easy to cherrypick) which can be further updated
“Quilt” works best; attempts to integrate with VCSes

• Stacked GIT (StGIT), Mercurial extension (MQ)
• Also partial cherrypicking solution

© December 11, 2003 Novell Inc.
31

User Interface

Most systems are too hard/clumsy to use
Frequently ignored or dismissed
More regard to this lately
Graphical tools painfully missing

© December 11, 2003 Novell Inc.
32

...?

Questions?

Merging detailed:
http://revctrl.org/

© December 11, 2003 Novell Inc.
33

LUNCH NOW!

 Thank you.

General Disclaimer
This document is not to be construed as a promise by any participating company to
develop, deliver, or market a product. Novell, Inc., makes no representations or
warranties with respect to the contents of this document, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc., reserves the right to revise this document and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes. All Novell marks referenced in this presentation are trademarks or
registered trademarks of Novell, Inc. in the United States and other countries. All third-
party trademarks are the property of their respective owners.

No part of this work may be practiced, performed, copied, distributed, revised, modified,
translated, abridged, condensed, expanded, collected, or adapted without the prior
written consent of Novell, Inc. Any use or exploitation of this work without authorization
could subject the perpetrator to criminal and civil liability.

