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Goal: Find minimum of a black-box function
that we haven’t seen before, when we have mul-
tiple optimization algorithms available.

Problem: How to switch between the available
algorithms so that we don’t reach the minimum
much slower than the best one?

Contribution: A framework that wraps already
implemented algorithms and allows easy testing
of selection strategies with a popular benchmark.

Background

Algorithm Portfolios

Often, we have multiple heuristic algo-
rithms, each suited to a different class
of problems. Algorithm Portfolios aim
to combine them within a single general
solver that will choose the best suited
algorithm for each input.
For each problem instance on input, we
apply a selection strategy to pick an
algorithm from this portfolio:
▶ Once or along a fixed schedule (of-

fline selection) based on one-time
measured features.

▶ In multiple rounds (online se-
lection) allocating time based on
their previous performance.

These approaches are not yet combined
very often. Here, we focus on the online
selection strategies.

Black-box Optimization

Continuous black-box optimization
solves the problem of finding a mi-
nimum value of a function that is
continuous and hidden analytical form.
Vast applications range from operations
research to machine learning. Many al-
gorithms are available — simplex al-
gorithms, gradient descent methods or
population-based methods.
The de-facto standard for benchmark-
ing optimization methods is the COm-
paring Continuous Optimisers COCO
platform. It provides the infrastruc-
ture, glue code for both running exper-
iments and preparing high quality fig-
ures, a set of common reference results
and the code for a set of benchmark
functions.

Applying algorithm portfolios on continuous black-box optimization is still a fresh area
of research. The main results so far lie either in population methods, combining a
variety of genetic algorithms together in non-black-box fashion, or in offline methods
based chiefly on exploratory landscape analysis.

The COCOpf Python Framework

Paradigm: Algorithms are black-box,
i.e. we completely avoid modifying their
actual code and we simply call them to
retrieve a result of single iteration.
Platform: We extend the Python imple-
mentation of the COCO platform. We
can easily benchmark different selection
strategies and can base our portfolio on
optimization algorithms from the SciPy
library.
Implementation: Multi-class Python
module that can:

▶ Run the experiment on a given set
of benchmark scenarios, much more
conveniently than the default COCO
approach

▶ Maintain a population of instances
(that is, algorithms from the portfo-
lio in a particular state)

▶ Wrap third-party minimization algo-
rithms to support resume and sus-
pend after every iteration using a
simple callback function; we use
Python threads, queues and excep-
tions in a fancy way

▶ Generate dataset summaries and
plots for publication

Each strategy is a standalone script that
uses the cocopf module for heavy lifting.
Algorithm wrappers for the SciPy opti-
mization methods and the reference im-
plementation of CMA are available out-
of-the box as well as two example algo-
rithm selection strategies that are bench-
marked below.
Availability: The framework is pub-
licly available as free software under the
permissible MIT licence at https://
github.com/pasky/cocopf.
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Our Reference Portfolio

We have chosen the six stock minimizers
provided by SciPy v0.13 that are available
for direct use:
▶ Nelder-Mead, the Simplex algo-

rithm.
▶ Powell, the tweaked Powell’s conju-

gate direction method.
▶ CG, the nonlinear conjugate gradi-

ent Fletcher-Reeves method.
▶ BFGS, the quasi-Newton method

of Broyden, Fletcher, Goldfarb and
Shanno.

▶ L-BFGS-B, the limited-memory
variant of BFGS with box con-
straints.

▶ SLSQP, the Sequential Least
SQuares Programming with box con-
straints.

These are local minimizers, therefore we
use a SciPy wrapper of the Basin Hop-
ping restart strategy; conceptually simi-
lar to Simulated Annealing with a fixed
temperature.
We also included the popular CMA algo-
rithm (genetic algorithm with the Covari-
ance Matrix Adaptation evolution strat-
egy). It converges slowly on reasonable
functions but it can beat even many dif-
ficult targets.

Selection Strategies

We implemented some reference selection
strategies to demonstrate the usage of our
framework.
▶ The UNIF strategy performs a

number of rounds where in every
round, a uniformly randomly se-
lected algorithm is iterated once.

▶ The EG50 strategy performs a
number of rounds where in every
round, the epsilon-greedy policy se-
lects an algorithm to be iterated

once. The algorithm with the cur-
rently best solution is run with p =
0.5, a randomly chosen algorithm
otherwise.

Sneak peek: Later research using the CO-
COpf framework has shown that EG50
actually beats most other strategies we
tried! Only two strategies based on the
UCB1 multi-armed bandit with smart
value rescaling have beaten EG50.

Future Work

The currently chosen reference portfo-
lio is somewhat ad hoc and unbalanced
with CMA dominating in many func-
tions. This makes it actually an inter-
esting testbed, but we need to add more
high performance algorithms anyway.
It turns out that most selection strategies
can be decomposed to mostly indepen-

dent credit assignment and credit accrual
schemas. COCOpf support for this may
enable easy recombination of strategies.
We would like to contribute at least parts
of our code back to the COCO framework,
and eventually allow Scipy users build op-
timization algorithm portfolios.
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Figure: Bootstrapped empirical cumulative distribution of FEvals/D for 50 targets in 10[2,−8] of
ill-conditioned functions in 20-D. All algorithm portfolio members and the UNIF and EG50 strategies
are shown. Note that for some early targets, BFGS and SLSQP beat the “best 2009” reference; we
believe this is something not known in the optimization research community.
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Figure: Bootstrapped empirical cumulative distribution of FEvals/D for 50 targets in 10[2,−8] of all
functions in 20-D. All algorithm portfolio members and the UNIF and EG50 strategies are shown.
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