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ABSTRACT
This paper aims to solve the problem of improving the ranking of
answer candidates for factoid based questions in a state-of-the-art
Question Answering system. We first provide an extensive com-
parison of 5 ranking algorithms on two datasets – from the Jeop-
ardy quiz show and a medical domain. We then show the effective-
ness of a cascading approach, where the ranking produced by one
ranker is used as input to the next stage. The cascading approach
shows sizeable gains on both datasets. We finally evaluate several
rank aggregation techniques to combine these algorithms, and find
that Supervised Kemeny aggregation is a robust technique that al-
ways beats the baseline ranking approach used by Watson for the
Jeopardy competition. We further corroborate our results on TREC
Question Answering datasets.
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H.3.3 [Information Search and Retrieval]: Information filtering,
Retrieval models

General Terms
Algorithms
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1. INTRODUCTION
Question answering (QA) is the task of finding an exact answer

to a user’s natural language question. In February, 2011, the IBM
Watson QA system beat human grand champions in the game of
Jeopardy!, marking a major milestone in QA research. This was
made possible by great advances in all stages of the QA system
pipeline, including question analysis, search, hypothesis genera-
tion, and hypothesis scoring. One of the key steps at the end of this
pipeline is ranking the candidate answers produced by weighing all
the evidence extracted and scored in support of each answer. In
Watson, this task is solved by using a Machine Learning approach,
where a model is built based on a set of training questions with
known answers, and then used to score new question-answer pairs.
This task can be viewed as a special case of rank-learning, and as
such recent advances in learning to rank [6] may be effectively ap-
plied here. In this paper, we provide an extensive study of different
approaches to ranking candidate answers as applied to QA.

Most recent advances in learning to rank have been driven by
web search [8]. While the task of ranking candidate answers in QA
is similar to document-retrieval, there are some key differences:
(1) Instead of relevance, which can be multi-graded in search, we
just have binary relevance judgments, corresponding to the right or
wrong answer. (2) The data has high class imbalance. While search
datasets also tend to have a high ratio of irrelevant to relevant docu-
ments, in the case of QA, there is typically only one correct answer.
(3) Search systems are typically evaluated on an entire ranked list
or the top 10 results produced, using metrics such as ERR, NDCG,
and MAP. However, in most QA systems the desired goal is to get
the top-ranked answer right [15, 36]. As such Precision@1 be-
comes the primary metric to optimize.

The above distinctions make answer-ranking in QA a special
case of the learning to rank problem, and observations made in the
context of document retrieval may not hold. This paper makes the
following contributions: (1) To the best of our knowledge this is
the first work that provides an extensive comparison of several ap-
proaches to learning to rank, applied specifically to answer-ranking
in open-domain QA (Jeopardy), as well as in the highly special-
ized domain of medicine. (2) We show how results can be im-
proved using a cascading approach, where the rankings produced
by one ranker are provided as inputs to another. Such a cascading
approach not only gives better performance, but also speeds up run-
time prediction. (3) We demonstrate how multiple rankers can be
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Figure 1: Overview of Watson

effectively combined using rank aggregation techniques stemming
from the Social Choice Theory literature. As will be seen later in
our experiments, in one dataset, logistic regression performs best,
while in other, LambdaRank perform best; and a combined sys-
tem performs better than any individual ranker in both cases. (4) In
practice, since it is hard to find a single ranker that performs best on
all datasets, our proposed system is a practical solution to this prob-
lem of having to rely on one ranker. Our system does not rely on
any single best ranker, rather combines different rankers and gives
the best of all. (5) The final system proposed in this paper is both
efficient and robust, giving improvements of 3.4 and 2.2% points in
Precision@1, over the algorithm used by Watson on the Jeopardy
and Medical task respectively. We show similar improvements in
performance on publicly available TREC QA datasets.

We believe our work furthers the state-of-the-art in Open Do-
main QA by showing how learning to rank (LETOR) can be ef-
fective for the task. At the time of running the TREC QA tasks
which ended in 2007, pointwise classification methods like logis-
tic regression and Maximum Entropy Models were state of the art
for the final answer selection component [19, 27, 32]. Many ad-
vances in Machine Learning for Information Retrieval tasks have
been made since then. We provide an extensive comparison of sev-
eral approaches of LETOR and Rank Aggregation for QA and im-
prove over the baseline Watson system built for Jeopardy. Given the
renewed interest in QA with Jeopardy, Siri and the DARPA BOLT
Program1, this work establishes a baseline for future QA research.
We emphasize that improvements on Jeopardy are significant be-
cause the system was worked on for several years and obtaining
improvements has not been trivial.

2. ANSWER RANKING IN WATSON
We begin by providing an overview of the Watson QA system.

Watson answers questions by first analyzing the question, gener-
ating candidate answers, and then collecting evidence over its text
and knowledge base resources supporting or refuting those answers.
For each answer, individual pieces of evidence are scored by an en-
semble of answer scorers, yielding features capturing the degree to
which evidence justifies or refutes an answer. Most features pro-
vide some measure of how justified the answer is for the question

1http://bit.ly/vViNIG

according to evidence in text passages or knowledge base infor-
mation. However, there are also scores representing question-level
features which indicate information about the question (for instance
the answer type specified by the question) as well as answer-level
features (for instance the popularity of an answer). An example of
a high recall score is a measure of the weighted overlap between
terms in a question and a passage. In contrast, an example of a high
precision score is a measure of the alignment of grammatical and
semantic relationships between the question and passage using a
graphical abstraction.

Finally, these features are used to rank candidate answers, based
on the likelihood the answer is correct. Crafting successful strate-
gies for resolving thousands of answer scores into a final ranking
would be difficult, if not impossible, to optimize by hand; so Wat-
son was designed to learn over existing questions and their correct
answers. From a Machine Learning perspective, a training/test in-
stance here, is a feature vector presenting evidence for or against a
question-answer pair being correct. Fig. 1 shows an overview of
the Watson system pipeline. In this paper, we only focus on the
final stage of ranking candidate answers. For a longer description
of the machine learning component of Watson the reader is referred
to [17].

Architecturally, Watson provides a confidence estimation frame-
work which uses a common data model for registration of answer
scores and performs machine learning over large sets of training
data in order to produce models for answer ranking and confidence
estimation. While the ranking component is critical for deploying
a full question answering system, it is also essential for developing
the system. Developers working on any aspect of the system, from
candidate generation to answer scoring, must evaluate the system-
wide impact of their component on end-to-end question answering
performance. This development methodology requires performing
thousands of experiments requiring retraining of the system to as-
sess the impact of every potential change. This drives the need for
machine learning which is computationally efficient, to allow for
rapid experimentation, and which is highly automatic, to achieve
valid results without requiring manual parameter tuning or special-
ist knowledge of machine learning algorithms to perform each ex-
periment. This approach allows developers to focus on optimizing
performance of their component and entrust to the framework the
assessment and proper combination of the component’s scores for
the end-to-end question answering task.

3. EXPERIMENTAL METHODOLOGY
We now describe our datasets and evaluation approach.

3.1 Datasets
We evaluate our system on two datasets – Jeopardy and Medi-

cal. The questions and correct answers for the Jeopardy dataset are
obtained from historical records of the American TV quiz show,
Jeopardy. In Watson, answer candidates are generated by searching
for hypotheses through several sources like Wikipedia, the Bible,
IMDB, ebooks on Project Gutenberg, using the INDRI[29] search
engine. NLP techniques are used to understand the focus and cate-
gory of a question, find the lexical answer type, and finally narrow
down on an answer-candidate in the retrieved passages. Details of
the techniques used for answer-candidate generation can be found
elsewhere [15, 13].

The Medical dataset was obtained from a Jeopardy-like compe-
tition held by the American College of Physicians called the Doc-
tor’s Dilemma. The underlying content being searched in this case
includes several medical content sources such as: ACP Medicine,
Merck Manual of Diagnosis and Therapy and MKSAP (a study
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Jeopardy Medical
Train Test Train Test

No. of questions 9337 2961 909 607
Avg. no. of candidates
per question

220 223 244 241

Avg. no. of correct an-
swers per question

1.30 1.20 1.57 1.77

Table 1: Dataset statistics

guide from ACP). Several candidate answers are generated per ques-
tion using a system similar to Watson but which had been adapted
for the medical domain [14].

Although the original datasets contain questions which do not
have a correct answer in the candidate set, in our experiments, as
in [31], we only consider those questions that have at least one
correct answer. Table 1 shows a summary of the data.

For both datasets several hundred features are extracted as de-
scribed in the previous section. There are 547 features in the Jeop-
ardy dataset and 323 in the Medical dataset. We refer the reader
to the references for a detailed description of the NLP components.
The focus of this paper is to study the effectiveness of various al-
gorithms on ranking the candidate answers. An example question
in the Medical dataset is PULMONOLOGY: Diagnosis associated
with “egg shell” calcification of intrathoracic lymph nodes. Wat-
son produces candidate answers such as Sarcoidosis, Silicosis and
Lymphadenopathy. Our task is to correctly rank these answers, so
that the correct answer(s) (Silicosis) is placed at the top of the list.
In all experiments in this work, the feature set is kept constant and
the goal is to evaluate algorithms for ranking.

3.2 Evaluation Measures
The output of our system is a ranked list of candidate answers

for each question. However, for most QA tasks we only get credit
for selecting one correct response – for instance, in the Jeopardy!
challenge a contestant is only allowed to give one answer. As such,
our primary evaluation metric is Precision@1 (P@1), which mea-
sures the percentage of questions for which the top-ranked answer
is correct.

In some domains, such as Medical QA, there can be more than
one correct answer – for instance, two valid diagnoses for the same
symptoms. In order to evaluate this setting, we also measure Nor-
malized Discounted Cumulative Gain [20] at rank K (K = 5,10).
NDCG@K looks at the top-K candidate answers, and assigns a
higher weight to a correct answer that is ranked higher than one
that is ranked lower. NDCG@K is computed as:

NDCG@K =
1

Q

Q

∑
q=1

DCGq

IdealDCGq
, (1)

where Q is the total number of queries, and

DCGq =
K

∑
i=1

2yqi −1

log2 (1+ i)
(2)

yqi is the relevance level of candidate answer i for query q. IdealDCG
is simply DCG with the ideal ranking. While P@1 only looks at the
top-ranked response, NDCG provides a finer granularity for evalu-
ation, rewarding algorithms for having a higher rank for a correct
answer, even if it is not at the top of the list. All metric numbers in
this paper are reported in %.

4. LEARNING TO RANK
Over the last decade, learning to rank methods have been effec-

tively applied to information retrieval tasks. These methods aim
at learning a model that given a query and a set of relevant doc-
uments, finds the appropriate ranking of documents according to
their relevancy. A question answering task is similar to the infor-
mation retrieval task i.e., a question is simply a query and a set
of candidate answers is analogous to a set of relevant documents.
The goal is now to find the appropriate ranking of these candidate
answers according to their correctness. There have been numer-
ous learning to rank methods developed, which can be divided into
three main categories: pointwise methods, pairwise methods, and
listwise methods.

Pointwise methods treat the ranking problem as a standard clas-
sification or a regression task. These methods assume that each
question-answer pair has either (a) a numerical or ordinal (rank)
score associated with it or (b) a relevance label in one of two or
more classes. The objective in the former formulation is to find a
model that predicts this score correctly through ordinal regression
methods [10]. In the latter case, the problem is reduced to classi-
fication and can be solved by methods such as SVMs or logistic
regression [25].

Pairwise methods like FRank [34], SVMRank [21], RankNet
[5], RankBoost [16] aim to learn the pairwise preference of candi-
date answers rather than their absolute rank. The intuition behind
these approaches is that in information retrieval one cares about
metrics like NDCG and MAP which reward a system for a ranking
of results as opposed to an absolute prediction of relevance, and
modeling preferences is closer to that final objective. In these rank-
ing methods, given a ranked set of candidate answers for a query,
preferences expressing that one answer is preferred over the other
are constructed from each pair of answers. More specifically, each
pair of candidate answers is given a binary label {+1,−1} based
on if the first answer in the pair has a higher rank than the second
answer. This construction transforms the original ranking prob-
lem into a binary classification problem of predicting these pair-
wise preferences. The goal is now to learn a binary classifier that
minimizes the number of incorrectly ordered pairs. A total ordering
of candidates is inferred from the predicted pairwise preferences.

Listwise methods operate on the entire list of candidate answers.
Unlike pointwise and pairwise methods where a loss based on the
rank of the individual candidate answer or of a pair is minimized;
in listwise methods, a direct loss (an appropriate evaluation mea-
sure defined by the user) is minimized between the true ranks of
the list and the estimated ranks of the list. These methods are the
most sophisticated and have been shown to outperform the other
two types of methods for information retrieval tasks [28]. Many of
these methods allow for the optimization of the final metric relevant
to the application. Examples of listwise methods are LambdaRank
[28], Coordinate-Ascent [24], AdaRank [37], ListNet [7] and [40].

In this work, we compare the following representative learn-
ing to rank methods for each of the 3 categories, applied to the
task of question-answering. We emphasize here that these different
rankers were selected based their ease of availability and imple-
mentation, and also based on their ability to run on a large dataset.

Logistic Regression (LR) is a binary classification method giv-
ing a score that is a probability of relevance, and is therefore a natu-
ral as well as effective choice for question-answering tasks [27, 19]
including for Watson for the Jeopardy challenge [13, 35]. It is a
pointwise method, and simply minimizes the logistic loss between
the true label of an answer and the estimated label (represented as a
real value). At the test time, it assigns a probability of relevance to
each candidate answer which can be sorted to get the appropriate
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Dataset LR Rank Ada- Coord- Lambda
Boost Rank Ascent Rank

Jeopardy 69.0 62.8 55.3 - 66.9
80.9 76.3 71.2 - 79.0

Medical 43.3 39.2 33.4 28.8 39.2
54.6 51.7 44.0 41.4 52.0

Table 2: Performance of different learning to rank methods. Top entry
in each cell is P@1 while bottom is NDCG@10.

ranking. Although logistic regression has not received much atten-
tion in the information retrieval task because of the other sophisti-
cated learning to rank methods, it has been successfully used in the
question answering task e.g. Watson system, to rank answers. The
team working on the Watson system has consistently found logistic
regression to beat other point-wise methods and logistic regression
was used in the final Jeopardy game[17].

RankBoost [16] is a pairwise ranking method based on boosting.
RankBoost first constructs the pairs (as would be done for any pair-
wise method) based on the preference order, and assigns each pair a
label +1 if the first answer is ranked higher than the second, and -1
if the second answer is ranked higher that the first; and transforms
the ranking task into a binary classification task. RankBoost then
applies the boosting algorithm on this classification task. It starts
with equal weights assigned to all pairs, and in each round, uses
weak rankers to reassign the weights. The pairs that are correctly
ranked are given lower weights while those incorrectly ranked are
given higher weights. In the end, a linear combination of these
weak rankers is used for the final ranking.

AdaRank [37] is similar to RankBoost except that it is a list-
wise approach. The weak rankers in AdaRank are learned by di-
rectly optimizing ranking measures such as NDCG or MAP, unlike
in RankBoost, where a pairwise loss is minimized.

Coordinate-Ascent is a listwise method proposed by [24]. It is
a linear feature-based method that directly optimizes the ranking
measure using the well-known optimization method i.e., coordi-
nate ascent. Optimization is performed cyclically, optimizing one
parameter at-a-time while keeping others fixed.

LambdaRank [28] is a listwise method based on the pairwise
ranking method, RankNet [5]. LambdaRank is based on the idea
that in order to learn a model the actual value of the loss function
is not needed, in fact only the gradient of the loss function is suffi-
cient. Once a gradient is known, it can be used with standard op-
timization methods e.g. gradient descent to minimize the original
cost function. An intuitive technique is used to compute the gradi-
ent for different evaluation measures like NDCG and MAP and is
used to learn the model.

Note that our datasets are relatively large (∼4GB, both train and
test) and some methods, such as SVMRank [21] took more than a
day to train on the smaller (Medical) dataset, and were therefore
discarded for this study.

As a sanity check of our implementations, we experimented and
found that all rankers (except logistic regression, as it is unsuitable
for multivalued data) were quite competitive when evaluated on
the Yahoo! dataset provided as a part of a recent learning to rank
challenge [8].

4.1 Experiments
We evaluated the performance of the different learning to rank

methods on the Jeopardy and Medical datasets. For logistic regres-
sion, we used the implementation in WEKA [18]. For RankBoost,
Coordinate-Ascent, and AdaRank, we used RankLib [11]; where
AdaRank and Coordinate-Ascent optimized P@1. For LambdaRank,

we used our own implementation, written to optimize NDCG (as it
cannot directly optimize P@1). For all rankers, we used the default
hyperparameters suggested by authors, without any tuning.

Results are presented in Table 2 for two metrics P@1 (top en-
try in each cell), and NDCG@10 (bottom). Given its computa-
tional complexity, Coordinate-Ascent did not terminate on Jeop-
ardy (after 2 days), and as such we only present its results on
the smaller dataset (Medical). We see that despite being the sim-
plest, the pointwise method logistic regression performs best on
both datasets and on both metrics, followed by LambdaRank and
RankBoost. This behavior is in contrast to the one noted by the
information retrieval community, where listwise methods usually
outperform pairwise methods, and pairwise methods outperform
pointwise methods [28]. This could be the case for the following
reasons: (1) Pointwise methods may be desirable in this degener-
ate case of learning to rank, where we only have binary relevance
and mostly just 1 correct answer amongst many incorrect answers.
We will see in the next section, that the other rankers often outper-
form logistic regression when there is less of a class imbalance. (2)
The features generated over the years of Watson development were
tested with logistic regression. So there might be an inherent bias
in feature generation and selection in favor of logistic regression.
This ordering in performance is not what we expect in general – as
we have independently verified by applying the above rankers on
web search data.

In the section, we will provide a mechanism that will not only
improve on each of these results, but also speed up the training
time, allowing us to fill in the missing entries corresponding to
Coordinate-Ascent in Table 2.

5. PRUNING
As discussed previously Question Answering for factoid ques-

tions is a high accuracy task and one is typically interested in pro-
viding one (or very few) precise answers. Matveeva et al. ([23])
showed that training a learning to rank algorithm (Rank-Net in their
case) using the top N results from an initial ranking helped improve
precision at the top of the ranked list for web-search. In this section
we study the impact of restricting the training set for the learning to
rank algorithms to the top N candidates determined by the baseline
Logistic Regression trained on all the training data. The idea be-
hind such a pruning technique is that if the first stage is reasonably
accurate, the re-ranking phase can focus on improving the precision
at high ranks. The motivation is different from active learning or
boosting where the most difficult examples are added to the training
set in subsequent training phases.

In the experiments in this section we train a base logistic regres-
sion using all training data. A new model is trained using the top
N answers for each query. For each such model trained we test its
performance on the top N candidates as ranked by the base logistic
regression on the test data. We repeat this procedure for all rankers
including logistic regression and the results are shown in Figure 2.

From the figure, all rankers including logistic regression show
significant improvements due to pruning on Jeopardy. When N = 5,
logistic regression achieves a P@1 of 72.2% which is a statisti-
cally significant improvement compared to the baseline model’s
P@1 of 69.0%. When N = 5, the performance of LambdaRank
(P@1=71.8%) is on par with that of logistic regression and their
performances are statistically indistinguishable.

On the medical data all rankers show improvements in going
from using all the data to pruning at 50. Unlike Jeopardy however,
all the rankers achieve their peak performance at different prun-
ing thresholds. LambdaRank peaks at N = 20 and further prun-
ing seems to hurt its performance. To understand this effect, we
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list the Success@K metric for the two datasets for the base Logis-
tic Regression model. The Success@K metric is the percentage of
queries for which a relevant result exists in the top-K results. While
on the Jeopardy data, even for K = 5 the base Logistic Regression
model achieves 90% success, on the Medical data this value sharply
drops after K = 20. We suspect that the quality of the initial ranker
is a factor that determines the extent of pruning that can be done for
a corpus. The impact of pruning on other metrics like NDCG was
similar to P@1.

We also experimented with using the models trained on the top
N candidates to re-score the entire test data but found that our ap-
proach of pruning the test data was slightly better. Such pruning of
data for training and testing the second pass rankers has the advan-
tage of speeding both train and test times allowing us to use more
complex rankers that might not be feasible on a large dataset. For
example, while we were unable to run Co-ordinate Ascent on the
entire Jeopardy data, pruning the results to N = 50 allowed us to
evaluate and use this ranker. An additional advantage of pruning
is that it reduces the class bias and therefore allows one to benefit
from more sophisticated learning to rank methods, an observation
also made in [35]. In our experiments, we have observed (see Fig-
ure 2) that in case of full data, pointwise methods such as logistic
regression outperform pairwise and listwise methods, but when the
data is pruned, listwise methods e.g., LambdaRank start to take
over.

K Jeopardy Medical
50 98.31% 94.39%
30 97.46% 90.44%
20 96.55% 87.80%
10 94.25% 80.23%
5 90.74% 71.82%

Table 3: Success@K for the baseline ranker, on the two corpora

In the next section, we will improve on these results even further
by combining these different rankers which will be the output of
our final ranking system.

6. RANK AGGREGATION
The performance of individual rankers vary significantly across

different datasets and training set sizes, as seen in Fig. 2. This
suggests that instead of relying on the single best ranker, it may
be better to combine all rankers to produce a more robust and ac-
curate ranking. Since individual rankers produce an ordering of
elements, and not a pointwise score that can be meaningfully ag-
gregated, we can leverage approaches to aggregating rankings that
have been studied in Social Choice Theory, and successfully ap-
plied to meta-search [12].

We begin by formally defining the rank aggregation task. Given
a set of entities S, let V be a subset of S; and assume that there is
a total ordering in V . We are given r individual rankers τ1, ...,τr
who specify their order preferences of the m candidates, where m
is size of V , i.e., τi = [d1, ...,dm], i = 1, ...,r, if d1 > ... > dm,d j ∈
V, j = 1, ...,m. If di is preferred over d j we denote that by di > d j.
Rank aggregation function ψ takes input orderings from r rankers
and gives τ , which is an aggregated ranking order. If V equals S,
then τ is called a full list (total ordering), otherwise it is called a
partial list (partial ordering).

All commonly-used rank aggregation methods, satisfy one or
more of the following desirable goodness properties: Unanimity,
Non-dictatorial Criterion, Neutrality, Consistency, Condorcet Cri-
terion and Extended Condorcet Criterion (ECC) [1]. We will pri-

Algorithm 1 Supervised Kemeny Ranking (SKR)

Input: τi = [τi1, ...,τim],∀i = 1, ...,r, ordered arrangement of m
candidates for r rankers.
w = [w1, ...,wr] – where wi is the weight of ranker i
μ = [μ1, ...,μm] – initial ordered arrangement of m candidates
k – the number candidates to consider in each ranker’s preference
list (k ≤ m)
Output: τ – rank aggregated arrangement of candidates in de-
creasing order of relevance

1. Initialize majority table Mi, j ⇐ 0,∀i, j = 1, ...,m

2. For each ranker p = 1 to r

3. For each candidate i = 1 to k-1

4. For each candidate j = i+1 to k

5. Mτpi,τp j ⇐ Mτpi,τp j +wp

6. Quick sort μ , using Mμi,μ j . If Mμi,μ j −Mμ j ,μi > 0 then μi
is greater than μ j. If Mμi,μ j −Mμ j ,μi = 0 then μi is equal
to μ j. If Mμi,μ j −Mμ j ,μi < 0 then μi is less than μ j .

7. Return τ

marily focus on ECC, defined below:

DEFINITION 1. The Extended Condorcet Criterion [33] requires
that if there is any partition {C,R} of S, such that for any di ∈ C
and d j ∈ R a majority of rankers prefer di to d j , then the aggregate
ranking τ should prefer di to d j.

The ECC property is highly desirable in our domain, as it elimi-
nates the possibility of inferior candidates in a ranking to affect the
choice between superior candidates. In other words, it offers the
property of Independence of Irrelevant Alternatives. Additionally,
ECC is a relaxed form of Kemeny optimal aggregation (defined be-
low), where the partition C and R are arranged in the “true” order,
but not necessarily the elements within partitions C and R. In addi-
tion to the desirable theoretical properties, ECC proves to be very
valuable in ranking in practice [12, 30], as is further corroborated
in our experiments.

We will focus on two classical rank aggregation techniques in
this paper: Borda and Kemeny, described below:
Borda Aggregation: In Borda aggregation [4] each candidate is
assigned a score by each ranker. The score for a candidate is the
number of candidates below it in each ranker’s preferences. The
Borda aggregation is the descending order arrangement of the av-
erage Borda score for each candidate averaged across all ranker
preferences. Though Borda aggregation satisfies neutrality, mono-
tonicity, and consistency, it does not satisfy the Condorcet Crite-
rion [38] and ECC. In fact, it has been shown that no method that
assigns weights to each position and then sorts the results by ap-
plying a function to the weights associated with each candidate sat-
isfies the Extended Condorcet Criterion [12]. This includes point-
wise classifiers like logistic regression. This motivates the use of
order-based methods for rank aggregation that do satisfy ECC.
Kemeny Aggregation: A Kemeny optimal aggregation [22] is an
aggregation that has the minimum number of pairwise disagree-
ments with all rankers, i.e., a choice of τ that minimizes:

K(τ,τ1, ...,τr) =
1

r

r

∑
i=1

k(τ,τi);
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Figure 2: Performance (P@1) for various pruning levels (N) for Jeopardy (left) and Medical (right) datasets.

Rankers Aggregation
Datasets LR Rank AdaRank Coord Lambda Mean Unsupervised Supervised

Boost Ascent Rank Borda Kemeny Kemeny Borda Kemeny Kemeny
Top-k Top-k

Jeopardy 72.2 67.5 69.0 69.8 71.8 70.1 72.2 72.3 72.0 72.0 72.4 72.4
(pruned@5) 82.3 80.2 80.9 81.0 82.2 81.3 82.3 82.3 82.1 82.3 82.4 82.4

Medical 43.2 42.7 42.7 33.6 44.8 41.4 43.3 44.0 43.8 44.0 45.5 45.5
(pruned@20) 54.7 53.6 54.6 48.0 55.7 53.3 55.0 54.9 54.9 55.3 55.7 55.7

Table 4: Performance of rank-aggregation methods along with the learning to rank methods on Medical and Jeopardy data. The top
entry in each cell is Precision@1, while the bottom is NDCG@10. The best results for each setting are presented in bold.

where the function k(σ ,τ) is the Kendall tau distance measured as
|{(i, j)|i < j,σ(i)> σ( j),but τ(i)<τ(j)}|, where σ(i) is used to
denote the position of i in ranking σ .

Kemeny aggregation satisfies neutrality, consistency, and the Ex-
tended Condorcet Criterion. Kemeny optimal aggregation also has
a good maximum likelihood interpretation [39]. Suppose there is
an underlying “correct” ordering σ of S, and each order τ1, ...,τr
is obtained from σ by swapping pairs of elements with some prob-
ability less than 1/2. That is, the τ’s are “noisy” versions of σ .
A Kemeny optimal aggregation of τ1, ...,τr is one (not necessarily
unique) that is maximally likely to have produced the τ’s.

While Kemeny aggregation is optimal in the sense described
above, computing a Kemeny aggregation is NP-Hard for r ≥ 4 [12].
So in practice, we use an approach that produces a 2-approximation
of Kemeny optimal aggregation, referred to as Approximate Ke-
meny in [30]. The Approximate Kemeny can be described simply
as a Quick Sort on elements using the majority precedence relation
	 as a comparator, where di 	 d j if the majority of input rankings
has ranked di before d j. In [30], Approximate Kemeny is shown to
satisfy the ECC property. Unless otherwise specified, we will use
Kemeny to refer to this approximation in the rest of the paper.

Instead of using total orderings provided by each ranker, we can
use partial orderings (for a subset of candidates). Since identify-
ing relevant candidates at the top of the list is more important, we
use partial orderings corresponding to the top k candidates for each
ranker. In our experiments, we use the top-ranked 50% of candi-
dates for each ranker, and refer to this variant as Kemeny Top-k.
Supervised Rank Aggregation: Kemeny and Borda aggregation,
being motivated from Social Choice Theory, strive for fairness and
hence treat all rankers as equally important. However, fairness is
not a desirable property in our setting, since we know that some

individual rankers perform better than others in answer-ranking. If
we knew a priori which rankers are better, we could leverage this
information to produce a better aggregate ranking. In fact, given
the ordering of a (validation) set of candidates, we can estimate the
performance of individual rankers and use this to produce a better
ranking on a new set of candidates.

In order to accommodate such supervision, Supervised Kemeny
Ranking [30] extends Approximate Kemeny aggregation to incor-
porate weights associated with each input ranking. The weights
correspond to the relative utility of each ranker; so for our exper-
iments we use weights proportional to the P@1 computed on the
training set. The pseudo-code for Supervised Kemeny Ranking is
presented in Algo. 1. Analogously to the unsupervised setting, we
use Supervised Kemeny Top-k to refer to SKR with k set to 50% of
m.

As in SKR, for Supervised Borda (See Algo. 2), we incorpo-
rate performance-based (Precision@1) weights in Borda aggrega-
tion by taking weighted averages of Borda scores instead of simple
averages. A similar approach to supervised Borda was used in [2].

6.1 Experiments
Given the 5 base rankers as inputs, we compare the 6 rank aggre-

gation methods described above. Since we are trying to establish if
rank aggregation can further improve results, we pick the pruning
setting with the best individual ranker performance, i.e. pruning
at 20 for Medical and 5 for Jeopardy. The results of these experi-
ments are presented in Table 4. Following Matveeva et al. ([23]),
any metric@K for datasets pruned@N when K > N, was computed
by appending the datasets with the next K −N examples from the
unpruned but ranked data. For example, we appended Jeopardy
pruned@5 with the 5 next examples from the logistic regression
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Algorithm 2 Supervised Borda

Input: τi = [τi1, ...,τim],∀i = 1, ...,r, ordered arrangement of m
candidates for r rankers.
w = [w1, ...,wr] – where wi is the weight for ranker i
Output: τ – rank aggregated arrangement of candidates in de-
creasing order of importance

1. Initialize βi ⇐ 0,∀i = 1, ...,m, βi is the borda score of can-
didate i

2. For each ranker p = 1 to r

3. For each candidate i = 1 to m

4. βi ⇐ βi +((m− i+1)wp)

5. Sort βi in descending order, such that τ = [d1, ...,dm],βdi ≥
βd j ,∀i, j = 1, ...,m, i 
= j

6. Return τ

pruning step to compute NDCG@10. This is reasonable for an ap-
plication where K results must be shown. In addition to individual
ranker performance, we also present the mean performance across
rankers. It is clear from the results that all rank aggregation tech-
niques perform better than the mean performance of rankers, both
in terms of P@1 and NDCG@10. While better than the mean, the
unsupervised aggregation techniques are outperformed by the best
single ranker. Additionally, note that the best individual ranker is
different for each corpus; while it is logistic regression for Jeop-
ardy, it is LambdaRank for Medical. So in the absence of hindsight,
it is always beneficial to use rank aggregation for more robust re-
sults, with lower variance.

The unsupervised aggregation techniques implicitly assume all
rankers are equally valuable; as such the performance of the best
ranker may be pulled down by other rankers. However, by incor-
porating performance-based weights for each ranker, Supervised
Kemeny Ranking is able to do even better than the best individual
rankers in terms of P@1 without loss on NDCG@10. Since we
are already aggressively pruning to the top 20 and top 5 in these
datasets, further focusing on the top 50% of these candidates, as
done in Kemeny Top-k does not improve results. Also Borda, the
weaker aggregation technique, is not competitive even with super-
vision. See [30] for a deeper analysis of Kemeny versus Borda.

Based on these results, we recommend always using multiple
base rankers and supervised rank aggregation, rather than relying
on the best individual ranker.

7. DISCUSSION
Figure 3 shows our proposed system with its different stages.

The initial set of candidates are ranked by logistic regression and
then the top N candidates are re-ranked by different rankers. The
output of the rankers is aggregated and the top K results as seen fit
for the application are shown to the user. Since logistic regression
and the different re-rankers use the same feature-set in our setup
and only the top N (20 or less) candidates are re-ranked, the over-
head due to the additional stages is minimal.

Table 5 summarizes the performance of our proposed system in
comparison with the baseline logistic regression. We also report
two new metrics in this table: RR@5 and RR@10. The reciprocal
rank (RR) is the average of the reciprocal of the rank at which the
first correct answer is found. RR@K limits the ranked list per ques-
tion to K. All metrics show improvement on both datasets. P@1

Jeopardy Medical
Metrics Base- Supervised Base- Supervised

line Kemeny line Kemeny
(Pruned @5) (Pruned @ 20)

P@1 69.0 72.4 43.3 45.5
NDCG@5 79.3 80.8 50.5 51.3

NDCG@10 80.9 82.4 54.6 55.7
RR@5 77.9 80.0 53.6 54.8

RR@10 78.4 80.5 54.7 56.2

Table 5: Supervised Kemeny vs baseline. An underline indi-
cates significance with a paired t-test at the 0.05 level.

on Medical is significant at the 0.1 level (p=0.09) and NDCG@10
and RR@10 are significant at the 0.05 level. For our Medical ap-
plication, the P@1 improvement of 2.2% points is substantial in
practice. However, it appears that our test set was not large enough
to establish statistical significance here. On the larger Jeopardy
test set, all metrics show significant improvements even at the 0.01
level. Our final system therefore always shows improvement re-
gardless of the performance of the individual rankers, and thus an
application developer can use it as a black box without evaluat-
ing individual rankers. Rank aggregation therefore provides for a
robust system combination strategy that we hope to test on other
domains that Watson can be applied to.

8. ADDITIONAL EXPERIMENTS ON TREC
DATA

In addition to our application domains of Jeopardy! and Medical,
we also ran experiments on the publicly-available TREC Question
Answering datasets. The TREC tracks have largely focused on fac-
toid questions e.g. “What is David Lee Roth’s birthday?” We used
data from the TREC 8-10 and TREC 12 evaluations [36] available
at the NIST website (http://trec.nist.gov/data/qamain.html). We only
considered questions that had at least one candidate answer from
the first pass retrieval stage, giving a total of 1,128 questions of
which 794 were randomly partitioned into the training set and the
remaining 334 made the test set. On average both the training and
test sets contain 2 correct answers per question from about 93 can-
didate answers retrieved from the initial retrieval.

In addition to the features used for the Jeopardy! dataset, 3
domain adaptation changes were made: first, the question anal-
ysis component was modified to address the differences in ques-
tion formats between Jeopardy! and TREC. Second, we included
Ephyra [26] and PIQUANT [9] question answer systems’ static
type based candidate generation components. Third, we included
the AQUAINT corpus, the 3 GB news wire corpus used in TREC
evaluation, in our searches. The domain adaptation resulted in 6
new features over those that were used on Jeopardy. Previous work
[15] has shown the competitiveness of these additional features on
top of the Jeopardy features for the TREC task.

Table 6 shows the performance of individual rankers with a prun-
ing setting of 50. The learning to rank methods are quite competi-
tive on both P@1 and NDCG@10 with LambdaRank equaling the
performance of logistic regression on P@1 and Coordinate-Ascent
being slightly better. All aggregation methods show improvement
over the mean performance of individual rankers. As before, we
see that the best performance is produced by Supervised Kemeny
Ranking, both in terms of P@1 and NDCG@10. Table 7 compares
Supervised Kemeny with a pruning threshold of 50 to the baseline
logistic regression trained on all candidates. The results show that
we achieve consistent improvements over the baseline on 5 differ-
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Figure 3: Our system pipeline.

TREC
Metrics Base- Supervised

line Kemeny
(Pruned @50)

P@1 65.9 66.8
NDCG@5 66.6 67.2
NDCG@10 70.6 71.1

RR@5 73.8 74.8
RR@10 74.4 75.4

Table 7: Supervised Kemeny vs baseline on TREC data.

ent metrics. In additional experiments on testing different prun-
ing settings we find that, while Supervised Kemeny improves over
the baseline, it is not always the approach with the highest perfor-
mance. However, the best performance, in general, is still achieved
by one of the rank aggregation approaches.

9. RELATED WORK
Related work in the area of QA and learning to rank has been

already introduced at various points. In this section we compare
our work with relevant work in learning to rank for QA. Although
learning to rank methods have extensively been applied to web
search, the application to QA has been limited. In fact, to the best
of our knowledge, Verberne et al. ([35]) is the only work where
learning to rank methods have actually been applied to the QA task
with the focus on the learning component – unlike others [3, 31]
where the focus has been on feature generation. Although similar
in spirit, Verberne et al. only study the behavior of various learning
to rank methods on the QA task; while in this work, we not only
study this behavior, but also provide a robust multi-stage system
that is able to improve over the results obtained by simply applying
learning to rank methods. Additionally, their work was restricted
to why questions while we work on factoid questions. We note
that our findings from the ranking stage of this multi-stage system

corroborate the observations of Verberne et al., that pairwise and
listwise methods are not always superior to pointwise methods.

10. CONCLUSION
We have presented a multistage approach to learning to rank can-

didate answers in a QA system. The final system proposed is ef-
ficient and robust, giving significant improvements over the state-
of-the-art Watson baseline, both in open-domain QA as well as in
the specialized discipline of Medicine. Our approach is also eas-
ily extensible, in that, many more base rankers may be added to
our aggregation, which may lead to further improvements. While
we evaluated our methods on candidate answers generated by Wat-
son, the results are applicable to any QA system, and may be more
broadly applicable to other rank-learning tasks.
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