Modeling of the Question Answering Task in the YodaQA System

Petr Baudiš and Jan Šedivý baudipet@fel.cvut.cz

Department of Cybernetics, Czech Technical University, Prague

Goal: General approach to answer naturally phrased factoid questions, using both structured and unstructured knowledge bases.

Contribution: A universal framework that allows integration of diverse approaches within a common pipeline and easy domain adaptation.

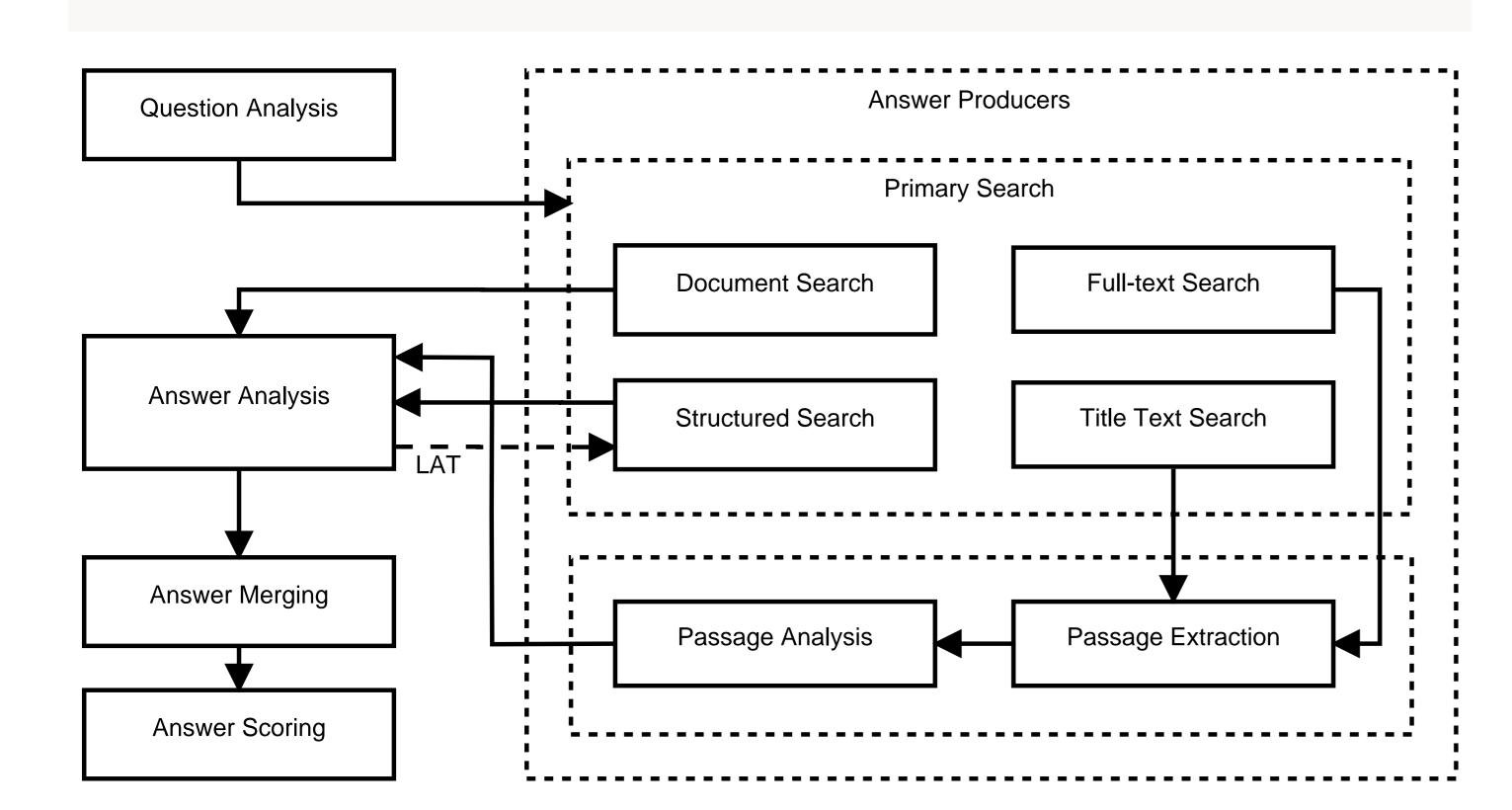
Dataset: We lack a good QA benchmark dataset. Both TREC and WebQuestions have issues. How to do reproducible QA research?

Background

Question Answering

Unstructured user query \rightarrow narrow text snippet answering the query.

... vs. linked data graph search: requires a precisely structured user query. ... vs. a search engine: returns a whole document or passage.


The Question Answering task is already part of e.g. the Google Search interface, and with the high profile IBM Watson Jeopardy! matches it has became a benchmark of progress in Al research.

We emphasize both open domain factoids and domain adaptation.

Previous Work

When querying structured knowledge bases, typically using the RDF paradigm and accessible via SPARQL, the problem can be either semantic parsing from free-text to a logical form (representable by SPARQL or KB-specific template subgraph), or using more fuzzy graph information retrieval

When relying on unstructured knowledge bases, some offload the information retrieval on an external web search engine; we avoid this to keep domain flexibility and reproducibility of results.

BioASQ Challenge

Pipeline

BioASQ final

Participated in **BIOASQ Task 3B** phase B (QA with information retrieval already performed). *Ideal answers* and yes/no questions not implemented.

Eventually, only very limited time was available for participation. We at least dis-

AP Rcl. Prec@1 MRR

33.0% 10.0% 0.132

play baseline performance of general QA system with minimal domain adaptation:

What is the name of the famous dogsledding

Wordnet hypernym: contest, event, canal, ...)

race held each year in Alaska?

Q. Analysis **Focus:** name; **SV:** held; **LAT:** race (by

- Questions with imperative words.
- Replaced default IR with input data.
- LAT also using GeneOntology.

Text

w/o G.O.		33.0%	8.0%	0.120	
w/o G.O., CRF		33.0%	5.5%	0.114	
w/o yes/no q.		43.5%	10.1%	0.148	
Text		tive genes fo nonogenic P			
Q. Analysis	Focus: genes; LAT: gene (by Wordnet hypernym: sequence,, group)				
Clues	causative genes, autosomal recessive forms, monogenic Parkinson's disease				
Snippets	Mutations in the Parkin gene (PARK2) are the major cause of autosomal recessive early-onset parkinsonism.				
	•	responsible ntified and d			
PARK2	DBp. LAT <i>protein</i> , GeneOnt LAT <i>gene</i> , protein, gene product				
	Successfu	l, "sharp" ! t	ype coercio	n match!	
	other: a	c es: 3, ori djecent to a edia and G.0	clue ment	-	
		occurence her: adjece	_		
Final Answers		, PARK2 (0 e (0.8), AR	•	nutations	

name, Alaska (concept clues), race, held, Clues famous, dogsledding, year area: 1717854.0, country: United States DBpOnt. enwiki Alaska, Name Concepts Sample picked passages: Various races are held around the state, but the best known is the Iditarod Trail Sled Dog Race, a 1150 mi trail from Anchorage to Nome ... **Fulltext** List of New Hampshire historical markers Name of the Year, Danish Sports N. of the Y., Titles List of organisms named after famous people, Alaska!, Alaska, Race of a Thousand Years 2000 Race DBpedia LAT automobile race, auto race in of T. Y. australia, new year celebration, quantity LAT "sharp" (exact specific)! TyCor match! occurences: 1, origins: first passage, NP, **other:** near a clue mention!, clue text inside DBp. LAT sport, sport in alaska, alaska, win-Iditarod Trail Race ter sport, attraction; (not race) Successful tycor. match, loose match by generalization of attraction to social event! occurences: 1, origins passage by various clues, noun phrase, **other:** suff. by clue text An- The 2000 Race of a Thousand Years (0.97), -01-03 (0.94), List of New Hampshire hisswers torical markers (0.93), a binomial name, a "make" (manufacturer) and a "model", in addition to a model year, such as a 2007

Chevrolet Corvette (0.90), the Iditarod Trail

Sled Dog Race (0.89), Various races (0.83)

Completely open source! (github.com/brmson)

Ask for a live demo! (live.ailao.eu)

The YodaQA Framework

sentations, answer sources and scoring features, but avoiding hand-crafted heuristics.

Paradigm: We build a portfolio of repre- Platform: Mainly Java, using the Apache UIMA framework and DKpro family of adapters to various NLP tools.

The Baseline QA Pipeline

Question Analysis

- Focus, LAT (Lexical Answer Type)
 - What was the first book written by Terry Pratchett?
 - The actor starring in Moon?
 - Where is Mount Olympus? location
- **Clues** (search keywords/phrases)
 - POS and constituent token whitelist
 - Named entities
 - Concepts: enwiki article titles (entity linking task)

Outcome: Question representation

Answer Production

- Passage-yielding enwiki search
 - Fulltext: passages containing clues
 - Title-in-clue: initial passage
 - Answers from NEs and NPs, as well as alignment CRF sequence tagging model
- Document titles may be answers
- Structured search (DBpedia, Freebase), all triplet objects of concepts are answers; also, multi-label cfier estimates specific property paths based on question bag-of-words

Outcome: Set of candidate answers

Answer Analysis

- LAT: NE type, DBpedia concept type, WordNet relations, numerical
- **Type coercion** of question and answer LATs: *Unspecificity* is WordNet
- hypernymy distance
- Phrase origin, clue overlaps, LAT kinds, type coercion (\Rightarrow 81 features)

Outcome: Ordered set of Answers

System Evaluation

Benchmark results on the TREC2001, 2002 test:

System	Precision@1	F_1	MRR
LLCpass03 (hand-crafted system)	68.5%		
OpenEphyra (hand-crafted OSS)	"above 25%"		
JacanalR (modern fully-learned OSS)		23.1%	
YodaQA v1.1	26.4%	26.4%	0.325

Benchmark results on the WebQuestions test:

System	F ₁ @1	F ₁ (Berant)
Sempre	35.7%	35.7%
JacanaFB	35.4%	33.0%
YodaQA v1.1	34.3%	<u>——</u>
STAGG (summer 2015, state-of-art)		52.5%

Dataset

- Stable (gold standard valid in 5 years)
- Focused (single question style, clean, without required inference)
- Realistic (typos, complex reasoning)
- Low bias towards any knowledge base
- Mixing questions with independent answering strategies (e.g. yes/no vs. factoid vs. paraphrasing)

We propose: A new hard factoid dataset curated, based on manually reviewed TREC 2001+2002 and YodaQA user data, mostly deducible from Wikipedia. 867 questions. • A new easy factoid dataset moviesC based on Webquestions and YodaQA user data within the movies domain, answerable via Freebase. 777 questions. Advantages: All questions should be temporally independent. Reference IR setup with fixed KB versions also available. Single style of questions (factoid).

Current work: Revised datasets for subtasks. Entity linking (!), answering sentence selection, matching subgraphs. Open problem: Automatic answer verification, when we do not limit just to entity names as answers. The current approach

of using regex patterns has many caveats.