General Purpose GPU Programming

Petr Baudis (pasky@suse.cz)

SUSE Labs Conf 2010

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Motivation

e Commodity computers today have another pretty powerful
computer inside — underused!

e Theoretical possibility: 100x speedup top commodity GPU vs.
top x86 CPU
e It is pretty easy to code for it, but efficient code can be very
tricky
e It is difficult to parallelize most algorithms suitably
e High latency — you should work on a lot of data
e A lot of device quirks — scheduling, memory latency, ...

e Remember IBM Cell?

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Motivation

e Commodity computers today have another pretty powerful
computer inside — underused!

e Theoretical possibility: 100x speedup top commodity GPU vs.
top x86 CPU

e It is pretty easy to code for it, but efficient code can be very
tricky
e It is difficult to parallelize most algorithms suitably
e High latency — you should work on a lot of data
e A lot of device quirks — scheduling, memory latency, ...

e Remember IBM Cell?
e |I'm not an expert!

e Focus on NVidia

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

What will we talk about

GPU — what it is, how it works, what it can and cannot do

GPU Programming Tools

GPU Programming Concepts

Few Examples

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

Outline

@ Graphics Processing Unit

Petr Baudis (pasky@suse.c: General Purpose GPU Programming

Graphics Processing Unit

GPU: A History

e (80s) Amiga — The first computer with a (2D) graphics
accelerator

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

GPU: A History

e (80s) Amiga — The first computer with a (2D) graphics
accelerator

e (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

GPU: A History

e (80s) Amiga — The first computer with a (2D) graphics
accelerator

e (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

e (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

¢ (2006) G80, R600 — Unified shader architecture: fully
programmable units

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

GPU: A History

e (80s) Amiga — The first computer with a (2D) graphics
accelerator

e (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

e (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

¢ (2006) G80, R600 — Unified shader architecture: fully
programmable units

e (2006) AMD FireStream, (2008) NVidia Tesla — “GPUs"
without video output

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

GPU Architecture

e On-board Memory is pretty fast and pretty large, but has
latency; small L2 cache

¢ Multiprocessors talk to memory and execure “simple”
programs (shader kernels) on many cores, have some small
local memory

e Cores are SIMT computational units — they must all execute
single instruction at once! (If one core needs to diverge, all
others are masked out and just wait)

e Instruction set is reasonable, Turing-complete, can do fast
ops with both ints and floats

¢ Register file is huge (x many threads share a core, all are
local variables)

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit

GPU Architecture

e On-board Memory is pretty fast and pretty large, but has
latency; small L2 cache

¢ Multiprocessors talk to memory and execure “simple”
programs (shader kernels) on many cores, have some small
local memory

e Cores are SIMT computational units — they must all execute
single instruction at once! (If one core needs to diverge, all
others are masked out and just wait)

e Instruction set is reasonable, Turing-complete, can do fast
ops with both ints and floats

¢ Register file is huge (x many threads share a core, all are
local variables)

e ATI Perspective: Much less cores than NVidia, but each core
is SIMD: 5-element vector unit

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Graphics Processing Unit
°

GPU Block Diagram

Host Interface

PolyMorph Engine

Varox ot || Tassawor || evmor
AsruteSoup Steam Ot

General Purpose GPU Programm

Graphics Processing Unit
°

Concrete Devices

GeForce GTX 260

Compute capability: 1.3

Total amount of global memory: 938803200 B
Number of multiprocessors: 24

Number of cores: 192

Total amount of constant memory: 65536 B

Total amount of shared memory per block: 16384 B
Total number of reg. available per block: 16384

Warp size: 32
Maximum number of threads per block: 512
Clock rate: 1.24 GHz

¢ Relatively good gaming GPU
e Commodity GPU almost the same, but 2 multiprocessors
e Fermi (GT100): Compute Capability 2.0, 32 x 16 = 512 cores

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Tools

Outline

® Programming Tools

Petr Baudis (pasky@suse.c: General Purpose GPU Programming

Programming Tools
.

Past Programming Tools

Assembler

e Hard-core, device-specific

e Actually documented!

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Tools
.

Past Programming Tools

Assembler

e Hard-core, device-specific

e Actually documented!

OpenGL (GLSL), DirectX (HLSL)

e Historical, still useful for generating complex graphics
(e.g. fractals); C-like syntax

e Limited capabilities, clumsy, but partially device-portable

A\

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Tools

Past Programming Tools

Assembler

e Hard-core, device-specific

e Actually documented!

OpenGL (GLSL), DirectX (HLSL)

e Historical, still useful for generating complex graphics
(e.g. fractals); C-like syntax

e Limited capabilities, clumsy, but partially device-portable

AMD Stream Close-to-Metal
e Historical, similar to CUDA, C-like syntax

e Mostly discontinued in favor of OpenCL

o fglrx driver

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Tools
°

NVidia

e Compute Unified Device Architecture

e Completely NVidia-specific, but can use all the features
(Compute Capability levels)

e Nice SDK, big base of existing applications and examples

e Contains some debugging, profiling tools, CPU emulation

e C-like syntax, gets compiled to .o and linked to your program
e Will probably be phased out later, but still used a lot

e nv driver

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Tools
)

Open Computing Language

Initiated by Apple, maintained by Khronos, all vendors
contribute

Support for CPUs, GPUs, Cell, ...

Still quite young technology, C99 extension but compilation on
runtime

Young drivers, not too stable; nv, fglrx

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts

Outline

© Programming Concepts

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts
°

Programming Concepts

e We can execute several workgroups (blocks) on the GPU on
different multiprocessors

e We execute single workgroup kernel on the GPU in many
threads

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts
°

Programming Concepts

e We can execute several workgroups (blocks) on the GPU on
different multiprocessors

e We execute single workgroup kernel on the GPU in many
threads

e We divide the set of threads to warps — threads in a warp run
concurrently

e When threads in the warp request memory, another warp of
the workgroup gets scheduled

e Frequently, warp size > core count: n-pumped cores (NVidia)

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts
°

Special Operations

Special Registers

e Each thread can gets its id within the workgroup (block)

e Each thread can get an id of the workgroup (block)

o’

Special Operations

e Single-instruction mathematical functions (e.g. sqrt, sin, log)

e Asynchronous memory transfer

e Synchronization: Some fences and barriers, typically only
within single block; single-warp atomic instructions and voting

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts
°

Variables

Available Types

e char, int, float
e double is slower on older devices, precision tradeoffs
e int4, intn, floatn — vectors

e Fast swizzling supported: float4 dup = vec.xxyy, rot =
vec.yzwx;

Storage Classes

e Global — on-GPU memory shared by all blocks (slow)

e Local — on-GPU memory reserved for current block (slow!)
e Texture — piece of global memory with fast random access

¢ Shared — on-multiprocessor memory for current block (small)

Auto — all local variables are in registers

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Programming Concepts
°

Memory Latency Hiding

e On CPU, context switch is expensive, [; l""‘”‘”""’;‘“—“””‘““”“‘“g"}
want big cache - W

e On GPU, context switch is cheap, = "
small cache is ok! - =

e Memory can still stall if access is not s
coalesced: m =

e Compute Capability-dependent;
newer cards have more relaxed
requirements

o Older devices need precisely L e
in-sequence accesses within the warp sill

o Newer devices coalesce all accesses Compuraion Theead
in-warp; threads accessing single
memory segment still means less
requests, obviously

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

I 1=

[8]

Waiting for data

Ready to get precessed

[

Programming Concepts
°

Design Patterns

Conditions and loops

e Branching is bad — some cores are idle when others branch!
e Bad (ex!): if (up) y += dy; else y -= dy;
e Good: int f =up 7 1 : -1; y += £ * dy;

e for-loops unrolled, while-loops problematic

e Recursion not supported — no real stack! (Everything inlined.)

e Approach 1: Many instances of a task, each thread solves one

e Approach 2: Many instances of a task, each block solves one

e Approach 3: Single instance of a task, all threads in all blocks
cooperate

e Threads divide input dataset into blocks, data dependency
problems

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples

Outline

O Examples

Petr Baudis (pasky@suse.c: General Purpose GPU Programming

Examples
0

Bitmap Operation — One Bitmap per Block

__device void invbyte(uchar xbitmap, int c) {
bitmap[c] "= 70;

__global wvoid invthread (uchar xgbitmap, int sz) {
uchar xbitmap = &gbitmap[gridDim.x % blockldx.x];
// Divide the image to many segments; within one
// segment, each thread will flip one byte.

int segsz = blockDim.x;
for (int i = 0; i < sz; i 4= segsz) {
inverse byte(bitmap, i + threadldx.x);
b
b
int main(void) {
cudaMemcpy (..., ..., i, cudaMemcpyHostToDevice);
invthread <<<bks, thrs>>> (bitmaps, size);
cudaMemcpy (..., ..., i, cudaMemcpyDevicetoHost);

}

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
oce

Bitmap Operation — One Bitmap for All

_ _global void invthread (uchar xbitmap, int sz) {
// Divide the picture to many blocks; threads
// on one multiprocessor work in that block.
int blksz = sz / gridDim.x;

// Divide the block to many segments; within one
// segment, each thread will flip one byte.
int segsz = blockDim .x;
for (int i = 0; i < blksz; i += segsz) {
bitmap[i + threadldx.x] "= 70;
}
}

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
®0

Matrix Multiplication

__global void mul_matrix (const float xml,
const float xm2, float *mRes) {
int n = blockDim.x;
int r = threadDim.x;

int ¢ = threadDim.y;
float sum = 0;
for (int i =0; i < n; ++i)
sum += ml[rxn + i] * m2[cxn + i];

mRes[r«n 4+ c] = sum;

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
oce

Matrix Multiplication Caveats

__global void mul_ matrix (const float xml,
const float xm2, float *mRes) {
int n = blockDim.x;
int r = threadDim.x;
int ¢ = threadDim.y;

float sum = 0;
for (int i =0; i < n; ++i)
// We assume m2[] is transposed
// Totally uncoalesced! Divide to tiles
// and pre—load to shared memory
sum += ml[rxn + i] * m2[cxn + i];

mRes[r*n + c] = sum;

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
°

Matching on Packets

o Parse PCRE string to DFA (Deterministic Finite Automaton)
state transition table on the host

e Buffering DFA-tagged packets in page-locked memory
e Periodically transferring packets to the device

o Computation is one thread (walking through the DFA) per
packet

e Result is one byte per packet
e http://www.eecs.ucf.edu/ zhou/pldil0.pdf

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
°

Remember...

GFLOPs to TFLOPs of computing capability, BUT...
High host-device latency

All threads within a block should execute the same instruction
at one time

CUDA — OpenCL transation ongoing now

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

Examples
°

Thank youl!

Thank you! Final questions?

Resources

e Many projects, tutorials, forums: http://gpgpu.org/

e CUDA Programming Guide (very good resourcel)
e CUDA SDK (huge body of examples)
e OpenCL Specs

e http://www.microway.com/pdfs/GPGPU_Architecture
_and_Performance_Comparison.pdf

Figures (c) NVidia

Petr Baudis (pasky@suse.cz) General Purpose GPU Programming

	Graphics Processing Unit
	
	
	
	

	Programming Tools
	
	
	

	Programming Concepts
	
	
	
	
	

	Examples
	
	
	
	
	

