
Graphics Processing Unit Programming Tools Programming Concepts Examples

General Purpose GPU Programming

Petr Baudiš 〈pasky@suse.cz〉

SUSE Labs Conf 2010

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Motivation

• Commodity computers today have another pretty powerful
computer inside — underused!

• Theoretical possibility: 100× speedup top commodity GPU vs.
top x86 CPU

• It is pretty easy to code for it, but efficient code can be very
tricky

• It is difficult to parallelize most algorithms suitably
• High latency — you should work on a lot of data
• A lot of device quirks — scheduling, memory latency, . . .

• Remember IBM Cell?

• I’m not an expert!
• Focus on NVidia

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Motivation

• Commodity computers today have another pretty powerful
computer inside — underused!

• Theoretical possibility: 100× speedup top commodity GPU vs.
top x86 CPU

• It is pretty easy to code for it, but efficient code can be very
tricky

• It is difficult to parallelize most algorithms suitably
• High latency — you should work on a lot of data
• A lot of device quirks — scheduling, memory latency, . . .

• Remember IBM Cell?
• I’m not an expert!
• Focus on NVidia

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

What will we talk about

• GPU — what it is, how it works, what it can and cannot do
• GPU Programming Tools
• GPU Programming Concepts
• Few Examples

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Outline

1 Graphics Processing Unit

2 Programming Tools

3 Programming Concepts

4 Examples

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU: A History

• (80s) Amiga — The first computer with a (2D) graphics
accelerator

• (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

• (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

• (2006) G80, R600 — Unified shader architecture: fully
programmable units

• (2006) AMD FireStream, (2008) NVidia Tesla — “GPUs”
without video output

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU: A History

• (80s) Amiga — The first computer with a (2D) graphics
accelerator

• (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

• (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

• (2006) G80, R600 — Unified shader architecture: fully
programmable units

• (2006) AMD FireStream, (2008) NVidia Tesla — “GPUs”
without video output

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU: A History

• (80s) Amiga — The first computer with a (2D) graphics
accelerator

• (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

• (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

• (2006) G80, R600 — Unified shader architecture: fully
programmable units

• (2006) AMD FireStream, (2008) NVidia Tesla — “GPUs”
without video output

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU: A History

• (80s) Amiga — The first computer with a (2D) graphics
accelerator

• (1996) 3dfx Voodoo — The first mass-available 3D accelerator
(everything hardcoded)

• (2002) NV20, R300 — The first GPUs with programmable
vertex, fragment shaders

• (2006) G80, R600 — Unified shader architecture: fully
programmable units

• (2006) AMD FireStream, (2008) NVidia Tesla — “GPUs”
without video output

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU Architecture

• On-board Memory is pretty fast and pretty large, but has
latency; small L2 cache

• Multiprocessors talk to memory and execure “simple”
programs (shader kernels) on many cores, have some small
local memory

• Cores are SIMT computational units — they must all execute
single instruction at once! (If one core needs to diverge, all
others are masked out and just wait)

• Instruction set is reasonable, Turing-complete, can do fast
ops with both ints and floats

• Register file is huge (× many threads share a core, all are
local variables)

• ATI Perspective: Much less cores than NVidia, but each core
is SIMD: 5-element vector unit

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU Architecture

• On-board Memory is pretty fast and pretty large, but has
latency; small L2 cache

• Multiprocessors talk to memory and execure “simple”
programs (shader kernels) on many cores, have some small
local memory

• Cores are SIMT computational units — they must all execute
single instruction at once! (If one core needs to diverge, all
others are masked out and just wait)

• Instruction set is reasonable, Turing-complete, can do fast
ops with both ints and floats

• Register file is huge (× many threads share a core, all are
local variables)

• ATI Perspective: Much less cores than NVidia, but each core
is SIMD: 5-element vector unit

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

GPU Block Diagram

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Concrete Devices

GeForce GTX 260
Compute capability: 1.3
Total amount of global memory: 938803200 B
Number of multiprocessors: 24
Number of cores: 192
Total amount of constant memory: 65536 B
Total amount of shared memory per block: 16384 B
Total number of reg. available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Clock rate: 1.24 GHz

• Relatively good gaming GPU
• Commodity GPU almost the same, but 2 multiprocessors
• Fermi (GT100): Compute Capability 2.0, 32× 16 = 512 cores

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Outline

1 Graphics Processing Unit

2 Programming Tools

3 Programming Concepts

4 Examples

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Past Programming Tools

Assembler
• Hard-core, device-specific
• Actually documented!

OpenGL (GLSL), DirectX (HLSL)

• Historical, still useful for generating complex graphics
(e.g. fractals); C-like syntax

• Limited capabilities, clumsy, but partially device-portable

AMD Stream Close-to-Metal
• Historical, similar to CUDA, C-like syntax
• Mostly discontinued in favor of OpenCL
• fglrx driver

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Past Programming Tools

Assembler
• Hard-core, device-specific
• Actually documented!

OpenGL (GLSL), DirectX (HLSL)

• Historical, still useful for generating complex graphics
(e.g. fractals); C-like syntax

• Limited capabilities, clumsy, but partially device-portable

AMD Stream Close-to-Metal
• Historical, similar to CUDA, C-like syntax
• Mostly discontinued in favor of OpenCL
• fglrx driver

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Past Programming Tools

Assembler
• Hard-core, device-specific
• Actually documented!

OpenGL (GLSL), DirectX (HLSL)

• Historical, still useful for generating complex graphics
(e.g. fractals); C-like syntax

• Limited capabilities, clumsy, but partially device-portable

AMD Stream Close-to-Metal
• Historical, similar to CUDA, C-like syntax
• Mostly discontinued in favor of OpenCL
• fglrx driver

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

NVidia CUDA

• Compute Unified Device Architecture
• Completely NVidia-specific, but can use all the features
(Compute Capability levels)

• Nice SDK, big base of existing applications and examples
• Contains some debugging, profiling tools, CPU emulation
• C-like syntax, gets compiled to .o and linked to your program
• Will probably be phased out later, but still used a lot
• nv driver

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

OpenCL

• Open Computing Language
• Initiated by Apple, maintained by Khronos, all vendors
contribute

• Support for CPUs, GPUs, Cell, . . .
• Still quite young technology, C99 extension but compilation on
runtime

• Young drivers, not too stable; nv, fglrx

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Outline

1 Graphics Processing Unit

2 Programming Tools

3 Programming Concepts

4 Examples

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Programming Concepts

• We can execute several workgroups (blocks) on the GPU on
different multiprocessors

• We execute single workgroup kernel on the GPU in many
threads

• We divide the set of threads to warps — threads in a warp run
concurrently

• When threads in the warp request memory, another warp of
the workgroup gets scheduled

• Frequently, warp size > core count: n-pumped cores (NVidia)

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Programming Concepts

• We can execute several workgroups (blocks) on the GPU on
different multiprocessors

• We execute single workgroup kernel on the GPU in many
threads

• We divide the set of threads to warps — threads in a warp run
concurrently

• When threads in the warp request memory, another warp of
the workgroup gets scheduled

• Frequently, warp size > core count: n-pumped cores (NVidia)

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Special Operations

Special Registers
• Each thread can gets its id within the workgroup (block)
• Each thread can get an id of the workgroup (block)

Special Operations
• Single-instruction mathematical functions (e.g. sqrt, sin, log)
• Asynchronous memory transfer
• Synchronization: Some fences and barriers, typically only
within single block; single-warp atomic instructions and voting

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Variables

Available Types
• char, int, float
• double is slower on older devices, precision tradeoffs
• int4, intn, floatn — vectors
• Fast swizzling supported: float4 dup = vec.xxyy, rot =
vec.yzwx;

Storage Classes
• Global — on-GPU memory shared by all blocks (slow)
• Local — on-GPU memory reserved for current block (slow!)
• Texture — piece of global memory with fast random access
• Shared — on-multiprocessor memory for current block (small)
• Auto — all local variables are in registers

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Memory Latency Hiding

• On CPU, context switch is expensive,
want big cache

• On GPU, context switch is cheap,
small cache is ok!

• Memory can still stall if access is not
coalesced:

• Compute Capability-dependent;
newer cards have more relaxed
requirements

• Older devices need precisely
in-sequence accesses within the warp

• Newer devices coalesce all accesses
in-warp; threads accessing single
memory segment still means less
requests, obviously

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Design Patterns

Conditions and loops
• Branching is bad — some cores are idle when others branch!

• Bad (ex!): if (up) y += dy; else y -= dy;
• Good: int f = up ? 1 : -1; y += f * dy;

• for-loops unrolled, while-loops problematic
• Recursion not supported — no real stack! (Everything inlined.)

Dividing work
• Approach 1: Many instances of a task, each thread solves one
• Approach 2: Many instances of a task, each block solves one
• Approach 3: Single instance of a task, all threads in all blocks
cooperate

• Threads divide input dataset into blocks, data dependency
problems

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Outline

1 Graphics Processing Unit

2 Programming Tools

3 Programming Concepts

4 Examples

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Bitmap Operation — One Bitmap per Block

__device__ void i n v b y t e (uchar ∗bitmap , i n t c) {
bitmap [c] ^= ~0;

}
__global__ void i n v t h r e a d (uchar ∗gbitmap , i n t s z) {

uchar ∗bitmap = &gbitmap [gr idDim . x ∗ b l o c k I d x . x] ;
// D i v i d e the image to many segments ; w i t h i n one
// segment , each th r ead w i l l f l i p one byte .
i n t s e g s z = blockDim . x ;
f o r (i n t i = 0 ; i < sz ; i += seg s z) {

i n v e r s e_by t e (bitmap , i + t h r e a d I d x . x) ;
}

}
i n t main (void) {

cudaMemcpy (. . . , . . . , i , cudaMemcpyHostToDevice) ;
i n v t h r e a d <<<bks , th r s >>> (bitmaps , s i z e) ;
cudaMemcpy (. . . , . . . , i , cudaMemcpyDevicetoHost) ;

}

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Bitmap Operation — One Bitmap for All

__global__ void i n v t h r e a d (uchar ∗bitmap , i n t s z) {
// D i v i d e the p i c t u r e to many b l o c k s ; t h r e ad s
// on one mu l t i p r o c e s s o r work i n tha t b l o ck .
i n t b l k s z = sz / gr idDim . x ;

// D i v i d e the b l o ck to many segments ; w i t h i n one
// segment , each th r ead w i l l f l i p one byte .
i n t s e g s z = blockDim . x ;
f o r (i n t i = 0 ; i < b l k s z ; i += seg s z) {

bitmap [i + t h r e a d I d x . x] ^= ~0;
}

}

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Matrix Multiplication

__global__ void mul_matrix (const f l o a t ∗m1,
const f l o a t ∗m2, f l o a t ∗mRes) {

i n t n = blockDim . x ;
i n t r = threadDim . x ;
i n t c = threadDim . y ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < n ; ++i)

sum += m1[r ∗n + i] ∗ m2[c∗n + i] ;

mRes [r ∗n + c] = sum ;
}

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Matrix Multiplication Caveats

__global__ void mul_matrix (const f l o a t ∗m1,
const f l o a t ∗m2, f l o a t ∗mRes) {

i n t n = blockDim . x ;
i n t r = threadDim . x ;
i n t c = threadDim . y ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < n ; ++i)

// We assume m2 [] i s t r a n s po s ed
// To t a l l y un coa l e s c ed ! D i v i d e to t i l e s
// and pre−l o ad to sha r ed memory
sum += m1[r ∗n + i] ∗ m2[c∗n + i] ;

mRes [r ∗n + c] = sum ;
}

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Regex Matching on Packets

• Parse PCRE string to DFA (Deterministic Finite Automaton)
state transition table on the host

• Buffering DFA-tagged packets in page-locked memory
• Periodically transferring packets to the device
• Computation is one thread (walking through the DFA) per
packet

• Result is one byte per packet
• http://www.eecs.ucf.edu/ zhou/pldi10.pdf

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Remember...

• GFLOPs to TFLOPs of computing capability, BUT...
• High host-device latency
• All threads within a block should execute the same instruction
at one time

• CUDA → OpenCL transation ongoing now

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

Graphics Processing Unit Programming Tools Programming Concepts Examples

Thank you!

Thank you! Final questions?

Resources
• Many projects, tutorials, forums: http://gpgpu.org/
• CUDA Programming Guide (very good resource!)
• CUDA SDK (huge body of examples)
• OpenCL Specs
• http://www.microway.com/pdfs/GPGPU_Architecture
_and_Performance_Comparison.pdf

Figures (c) NVidia

Petr Baudiš 〈pasky@suse.cz〉 General Purpose GPU Programming

	Graphics Processing Unit
	
	
	
	

	Programming Tools
	
	
	

	Programming Concepts
	
	
	
	
	

	Examples
	
	
	
	
	

