
Lowlevel Userspace
Programming

Petr Baudis
pasky@ucw.cz

2

What Will Be Going On

Commented tour through random bits of system code
Assembly-level userspace programming

• Low-level kernel ABI
• The ELF-land, behind the mirror and dynamic linking

Magic syscalls
• mmap() and how to use it to control hardware
• Write your own dosemu: ucontext, vm86 (loadtycoon)
• The ptrace() interface (retty – steal process' tty)

Anything else you want!

http://pasky.or.cz/pres/lowlevel/

3

What's Expected from You

Basic C programming knowledge
Basic Linux environment familiarity
Basic Linux programming experience

To ask questions

4

Why's It Useful for You

Debugging problems!
Security hacking prerequisite
Tinkering with closed-source programs
Low-level debugging
Possibly kernel hacking

It's fun to understand
how things work

Assembly Crash Course

6

Assembly in 30 seconds

Processor-specific programming at the instruction level
We'll be talking about x86 (i386) – AT&T syntax:

pusha
mov $0x1, %eax
xor %ebx, %ebx
int $0x80
mov %eax, (%esp)
popa

gcc -S -fverbose-asm file.c, objdump --source -d
[gdb] disass, info reg

7

Registers and Stack

Registers: %eax, %ebx,
%ecx, %edx, ...

(fast work with small
chunks of data)

Stack: [%esp, %ebp]
(storage of larger chunks

of local data, passing
parameters to
subroutines)

Frames - backtrace()

8

Masinka

•Sometimes useful: Run raw x86 assembly within Linux
process context
•Compile as a symbol, call from C program
•...or just make it a main!

Low-level Kernel ABI

10

Low-level Kernel ABI - Syscalls

ABI = Application Binary Interface (c.f. API)
System calls (syscalls) – call some function inside the
kernel from userspace
Several syscall gate methods:

• int 0x80
• sysenter (Intel)
• syscall (AMD)

Combined by syscall vsyscall ;-) (see next slides)

11

Low-level Kernel ABI – int 0x80 gate

The slowest but simplest
int instruction triggers a software interrupt

• (e.g. BIOS and DOS provide some interrupts as a system
interface)

• Linux provides just one – 0x80
• %eax contains syscall number (<asm/unistd.h>)
• other registers contain syscall arguments (usually)

An int 0x80 call switches to kernel mode and
dispatches control to an in-kernel sys_whatever() function

12

Low-level Kernel ABI - vsyscalls

Virtual syscalls
Switching to kernel mode is rather slow (relatively
speaking)
2.6 kernels map a read-only page to userspace that
contains some code and data: “linux-gate.so”
Instead of switching to kernel mode, applications call
code from the vsyscall page in userspace
Example: “syscall()”, time()

13

Low-level Kernel ABI - others

Other kinds of ABI:
• sysctl
• /proc
• /sys
• netlink (uevent),

signalfd, ...
• ...

Memory Mapping Hacks

15

mmap()

Not so magic one, and commonly known too
Map given file (or anonymous memory) to process' address
space (possibly at fixed address)

16

Memory Mapping for GPIO

The processor is just a circuit with bunch of pins!
And in your programs, you are wiggling with these pins...

Every system programmer should have basic experience
with programming microcontrollers.

On most archs, GPIO is just mapped on memory region
with fixed address and special semantics.

Memory is a wonderful place!

int mem_fd = open("/dev/mem",O_RDWR|O_SYNC);
volatile uint32_t *gpio_map = mmap(NULL,
 GPIO_BLOCK_SIZE, PROT_READ|PROT_WRITE,
 MAP_SHARED|MAP_FIXED, mem_fd, GPIO_BASE);

17

Mapping PCI Device Interfaces

PCI cards and such share the same address space as main
memory – they are again mapped to various memory
regions.
•Each card advertises its regions in a standard way.
•Even for unrecognized cards, kernel publishes their
regions in /sys/bus/pci/devices/.../resource*

•Special file that is mapped to the memory. mmap() it
and you are set!

Always be careful about MAP_SHARED vs. MAP_PRIVATE!

https://github.com/billfarrow/pcimem

ELF and Mr. ld.so

19

Executable and Linkable Format

The usually used binary format for code in current UNIX
Used for object files (.o), shared libraries (.so),
executables and core dumps
Divided to sections (matter for linking) and segments
(matter for executing)
Sections: .text, .data, .interp, ...

readelf | eu-readelf, objdump

20

How Kernel Executes Programs

•Program caller does the fork() and execve() syscalls
• ...or glibc interface: system(), posix_spawn(), ..

.

•Kernel determines the format (is it shebang “#!”
or “\7fELF”?), loads the executable

• fs/exec.c, fs/binfmt-elf.c
• security checks, aux vector, envp, personality, …

•Executable and interpreter (dynamic linker:
/lib/ld-linux.so) is loaded by kernel

21

How Programs Are Loaded

•ELF interpreter is usually the “dynamic linker”
• Linker can be executed directly
• Behavior can be affected significantly (ld.so(8))

•The interpreter performs relocation, sets up TLS, links in
libraries, .init section text is executed, ...

• elf/rtld.c

•The interpreter jumps at program's entry point (as
specified in ELF header)

22

Dynamic Linking

Library routines aren't part of the executable but are in a
(system-wide) library – shared object, .so
Symbols (functions or variables) are referenced in the
executable by name and looked up in libraries the
executable is dynamically linked to (also by specifying
their names); immediately or on-demand (lazy) - LD_BIND
Interfaces: dlopen(), dl_iterate_phdr(), LD_AUDIT: latrace
Commented code tour: screenenv

23

Dynamic Linking - Relocations

For each symbol, list of its references is kept
Dynamic linker updates the references at runtime to refer
to memory image of loaded library: relocations

Text section (==code) should be shared between several
instances of the program
Relocating inside of .text compromises that
Global Offset Table is thus allocated in private data
section; each symbol has an entry with the address there
Text section merely references symbol's GOT entry (its
address is same in all instances)

24

Dynamic Linking - PLT

Relocating all symbols at execution time can incur
unnecessary overhead
Function symbol references can be referenced lazily using
the Procedure Linkage Table
When calling function, code jumps not directly at the
function address, but into PLT; each function has own
entry there containing several instructions
First instruction is a jmp referencing the GOT entry,
which is initialized by address
of second instruction in PLT
entry, that calls dynamic linker
to resolve the symbol reference

25

Dynamic Linking - Goodies

GNU_IFUNC

Visibility, weak symbols

Versioned symbols

Various Magic

27

Your Very Own dosemu

vm86(): Switch CPU to real-mode emulation mode
In fact not very useful unless you actually are making
exactly dosemu (or have very special needs, like calling
VESA BIOS)
If you are running “foreign” but protected-mode code,
alternatively just:

• Run it as-is
• Possibly permit direct I/O using ioperm()
• Use custom SIGSEGV handler to emulate sw interrupts etc.

sigaction(2) can pass signal handler context (especially
registers) information: *ucontext_t (see <sys/ucontext.h>)

Commented code tour: loadtycoon

28

ptrace()

Linux provides a method for processes to manipulate other
living processes – ptrace()
Appropriate permissions required
Types of manipulation:

• Peek/poke process code and data
• Peek/poke process registers
• Peek/poke process signal information
• Trace program execution

– Stop at next instruction
– Stop at next syscall

29

Commented code tour

retty: “Steal” tty of running process and redirect it to the
current tty temporarily (“mini-screen”)

30

Commented code tour

retty: “Steal” tty of running process and redirect it to the
current tty temporarily (“mini-screen”)

First, set up and manage a pty (like screen, script, GNU
expect)
General idea – inject code to the running process that will
reopen stdin/stdout/stderr as the new tty; when
detaching, restore stdin/stdout/stderr to the original tty

31

Questions?

32

Thank You

http://pasky.or.cz/plz-lowlevel/
pasky@ucw.cz

[Cpress] Lukas Jelinek – Jádro systému Linux
ELF Specification (+ platform supplements)
U. Drepper: How to write dynamic libraries
Algoritmy a jejich implementace (MFF UK)

POSIX2008

http://pasky.or.cz/plz-lowlevel/

	title
	content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

