brmson (YodaQA)
A DeepQA-style Question Answering Pipeline

Petr Baudi$ (pasky®ucw.cz)
FEE CTU Prague; brmlab hackerspace

Summer 2014

Introduction

Outline

@ Introduction

Introduction
@00

brmson

A Question Answering system inspired by IBM Watson
and its DeepQA pipeline architecture.

= Practicality
Primary goals: = Extensible design

= Scientific rigor

Current aims: Open-domain factoid questions (TREC QA),
replicating the DeepQA scheme with
75% recall, 35% accuracy-at-1.

Multiple implementations:
BlanQA (legacy), YodaQA (current)

Introduction
oeo

brmson: BlanQA (legacy)

= BlanQA: Legacy pipeline based on CMU's OAQA
= Java, UIMA without CAS branching, UIMA-ECD

= Architecture based on OAQA helloga prototype GitHub
branch, but rewritten almost from scratch

= enwiki in solr, Ephyra answer type system,
Ephyra modules provide the actual algorithms and rules

= Complete setup documentation, fairly clean code
= Interfaces: Interactive and chatbot (IRC)
= Functional OAQA end-to-end pipeline!

Introduction
ooe

brmson: YodaQA (current)

= YodaQA: “Yet anOther Deep Answering pipeline”

= Designed and implemented from scratch — again

= Java, UIMA, DeepQA-style CAS branching, UIMAfit

= Architecture based on simplified DeepQA (as published)

= Every entity (question, retrieved document, answer) == CAS
= NLP analysis: Third-party UIMA annotators via DKPro

= Uses type coercion and parse trees instead of a fixed type
system and regexs; no Ephyra components

YodaQA Architecture

Outline

@® YodaQA Architecture

YodaQA Architecture
90000

YodaQA Pipeline

Question

Candidate

Search
result
cM
[o o o e e e
|
| Supporting
| evldence
|
| Evmm pmuusing -nd
Retrieval

—— Question CAS b F!""
s Primary searchCAS @————————————————————— mr;m
— — - Primary search result CAS
— — Candidate answer CAS
Supporting evidence CAS
Answer

DeepQA architecture (Epstein et al., Making Watson fast).
A series of CAS multipliers.

YodaQA Architecture
(o] lelele]

YodaQA Pipeline

Question

Candidate

—— Question CAS
—eeb Primary search CAS
- = = Primary search result CAS
— —s Candidate answer CAS
Supporting evidence CAS

Answer

Architecture inspired by DeepQA,
but many modules are obviously much simpler.

YodaQA Architecture
[e]e] lele]

Question Analysis

Full dependency parse

= Focus generation (hand-crafted dependency, pos rules)
= What was the first book written by Terry Pratchett?
= The actor starring in Moon?

= LAT (Lexical Answer Type) generation (from focus)

= Where is Mount Olympus? location

= Clues (search keywords, keyphrases) generation:

= POS and constituent whitelist

= Selecting verb (hand-crafted rules)
= Named entities

= Focus and the NSUBJ constituent
= enwiki article title exact match

Outcome: Set of Clue and LAT annotations in QuestionCAS

YodaQA Architecture
[e]e]e] o]

Answer Production

Two answer production pipelines run independently in parallel
(custom flow controller developed).

= SolrFull: Passage-yielding search

= Fulltext: Full-text + title search for clues,
passages containing clues are considered
= Title-in-clue: Title search for clues,
initial passage is considered
= Passages are parsed, NEs and NPs
are answer candidates

= SolrDoc: Full-text search for clues,
document titles are answer candidates

Outcome: Set of CandidateAnswer CASes

YodaQA Architecture
[ee]e]e]]

Answer Analysis

= Each answer is POS-tagged and has dependency tree,
Focus generated (dependency root)

= LAT generation — named entity type, DBpedia concept
type, WordNet instance-of relation, rule for CD POS

= Type coercion of question + answer LAT: Unspecificity is
path length in the WordNet (hypernymy, hyponymy) graph

= Answer features (help determine trustworthiness) for:

= Phrase origin
= Generated LATs
= Type coercion stats

= Logistic regression generates answer confidences

Outcome: Ordered set of Answer annotations in FinalAnswerCAS

Current Performance

Outline

© Current Performance

Current Performance
@000

Testing Dataset

= TREC QA 2002 + 2003 XML datasets converted to plaintext

= Curated (pruned and with revised answer patterns), extended
with an IRC BlanQA dataset

= 430 training questions (also used for development),
430 testing questions (held out)

= 430 is current practical limit for measurement turn-around
(2-3 hour evaluation runs on my home computer)

= Matching correct answers with regexes has severe limits

Current Performance
[o] le]e}

Experimental Results (Test Set)

Rank

Candidate answer binary recall: 70.0%
Final answer accuracy: 22.5%

Answer Ranks
200

100

50

25

10

99 148171 206
Answer

300

Current Performance
[e]e] e}

Analysis Tools

$ data/eval/trecnew-single200-measure.sh

$ data/eval/tsvout-stats.sh | head -n 5

3b46430 14-08-14 CluesMergeByText: Al... 29/134 14.5%/67.0% as 0.424
£fdb239b 14-08-11 Revert "CluesToConce... 23/131 11.5%/65.5% as 0.395
4cd4a09 14-08-10 Clue: Add a label fe... 21/131 10.5%/65.5% as 0.390
e8ad387 14-08-10 SolrFullPrimarySearc... 24/131 12.0%/65.5% as 0.389
acf17eb 14-08-10 ClueConcept, CluesTo... 18/126 9.0%/63.0% as 0.372
$ data/eval/tsvout-compare.sh 01718ca 8fc9856

---------------- Gained answer to:

1424 Who wo... for best actor in 19707 George C. Scott 0.00 1.00
———————————————— Improved score for:

1417 Who wa... in less than four minutes? Roger Bannister 0.57 0.77
———————————————— Worsened score for:

1408 Which ... Lionel Jospin a member of? Socialist 0.31 0.30

———————————————— Lost answer to:
1427 What w... spaceship on the moon? Eagle 0.04 0.00 $

Current Performance
[e]ele] }

AdaptWatson-style Analysis Snapshot

1407 When did the shootings at Columbine happen? | April 20\s?, 1999
#stopwords/#synsets Columbine High School massacre does not
appear; ignore "happen" or add synset that includes "occur"

1439 How deep is Crater Lake? | 1\s?7,\s7932 feet
#wikipieces "Crater Lake" yields "crater lake" matches and

never the main article; also, it should be 1,943 feet

1666 What is the name of the US military base in Cuba? | Guantanamo
#abbrev US -> U.S., then should work (answer Guantanamo!)

1606 What is the boiling point of water? | 212 degrees Fahrenheit

100 °C
#wikipieces (7) - for all NPs/NEs/nouns in question, include same-
titled wikipedia articles in primary search;
furthermore, do not split such to sub-clues?
#synsets (6) - include synsets instead of words
#abbrev (4) - acronym generation / expansion; e.g. PC = P.C. =

Personal Computer; in expansion, try using #redirects?

Review, Future Work

Outline

O Review, Future Work

Review, Future Work
[eJele]

brmson: YodaQA vs. Primary goals

Practicality Extensible design

= Detailed setup = UIMA + DeepQA gcientific rigor
instructions structure: Easy . Gold Standard in-
(including data pipeline branching terface, TREC QA
sources setup!) and addition of new based c,Iataset

= (Dl el modules All datasets, evalua
documentation = DKPro: Third-party tion tools a'nd mea

* Interactive user UIMA ~ annotators surements published
Frivarees (tokenizers, parsers, AdaptWatson me

- Open Soure etc.) are freely thodoloay for mer-
ASLD | replaceable gy P
(icence), formance analysis
clean code and ~ * Internal UIMA com- driving development
build system ponents are as fine-

grained as possible

Review, Future Work
[eJele]

brmson: YodaQA vs. Primary goals

Practicality Extensible design

= Detailed setup = UIMA + DeepQA ggientific rigor

instructions structure: Easy _
. | -

(including data pipeline branching fe?f‘ic:t"f;‘s;? o
sources setup!) and addition of new based éataset

r Detaled design modules = All datasets, evalua
documentation = DKPro: Third-party tion tools a'nd mea

= Interactive user VIMA ~ annotators surements published
interface (tokenizers, parsers,

- Open source etc.) are freely " AdaptWatson —me-
ASL? li replaceable thodology for per-
(icence), formance analysis
clean code and = Internal UIMA com- driving development
build system ponents are as fine-

grained as possible

Review, Future Work
[eJele]

brmson: YodaQA vs. Primary goals

Practicality Extensible design

= Detailed setup = UIMA + DeepQA ggientific rigor

instructions structure: Easy .
. | -

(including data pipeline branching i?fjceSt?SE? (IQTA
sources setup!) and addition of new based (;ataset

= Detailed design modules All datasets, evalua
documentation = DKPro: Third-party tion tools a,nd mea

* Interactive user UIMA ~ annotators surements published
interface (tokenizers, parsers, AdaptWatson me

- Open source etc.) are freely s B e
ASL? |i replaceable gy per
(icence), formance analysis
clean code and * Internal UIMA com- driving development
build system ponents are as fine-

grained as possible

Review, Future Work
[e] Tele]

YodaQA: Future Work
TODO List for 1.0:

= Extra “Evidence gathering”
phrase — from the final list of

question, take an elite (top 5), With more contributors:

generate extra features

Generate answers from
structured sources (esp.
numerical quantities like
height of mountain, distance
from Sun, etc.)

Maybe “Answer merging”
engine to merge similar
answers and distribute
evidence between related ones
Maybe try different answer
claccifiers

Cleaned up testing dataset
UIMA component unit tests

Verification dataset runs with
human judges

Insightful web interface

Scale-out, parallelization and
memory usage optimizations
Apply to some real-world
projects and domains

Review, Future Work
[e]e] 6]

Long-term Plans and Goals

Post-YodaQA architecture reformulation as IE problem:
Latent knowledge graph paradigm

(QA pipeline as on-demand population of semantic network;
answer retrieved by path search, scored by edge coercion)

= brmson-based startup: Looking for good business cases

= Disembodied autonomous agent: QA with deduction +
goal-setting + planning (maybe in 15 years)

= Personal: Internship at NIl Tokyo in 1st quarter 2015
(answering of Physics questions in university entry exams)

Review, Future Work
[e]e]e]]

Conclusion

= Practical, open source QA system

= Clean architecture and development methodology
= Reasonably documented!
= Clear path forward, towards reference experimental testbed
= |Immediate tasks: Add evidence gathering,
query structured data sources

paskyQucw.cz
petr.baudis@gmail.com

Thank you for your attention!

	Introduction
	YodaQA Architecture
	Current Performance
	Review, Future Work

