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Outline

● What is Go and why is it interesting
● Possible approaches to solving Go
● Monte Carlo and UCT
● Enhancing the MC simulations
● Enhancing the tree search
● Automatic pattern extraction
● Unsolved problems



  

What is Go

History

Concepts

Rules

Basic Tactics



  

The Go Board Game

● Go / Igo / Goe / Baduk / Wei-Qi
● ~3000 years old - the oldest board game
● Very simple rules, very high complexity
● Wide-spread in China, Korea, Japan
● Rich culture surrounds the game
● http://senseis.xmp.net/



  

Go: Basic Concepts

● Square board with 19x19 intersections
– Small board variation with 9x9

● Black and white players alternate in placing 
stones on the intersections

● Stones do not move; they can be removed if 
completely surrounded

● Players surround territory and capture enemy 
stones

appendix 1



  

Go: Capturing Stones

● Directly connected stones == group
● #of unoccupied intersections around group == 

liberties
● When group has no liberties, it is removed
● Removed group: capture; single lib.: atari
● Ko rule - later



  

Go: Tromp­Taylor Rules

● Players place stones alternately
● If the board is filled, players play “pass”
● The player controlling more intersections wins
● Eye: empty places completely surrounded by 

stones of one color
● Controlling intersection: Either occupied by a 

stone, or an eye of given color
● Komi: Point bonus for white

final position – appendix 4



  

Go: Other Rulesets

● Many Go rulesets: Tromp-Taylor, Chinese, 
Japanese, ...

● Tromp-Taylor: Formal, terse, easy for 
computers

● Japanese: Easier for humans, most common, 
hard for computers; slightly different counting

● All rulesets are equivalent or 1pt-equivalent in 
common situations



  

Go: Life and Death

● So much for the rules; now basic tactics!
● Group is alive: Can form two eyes
● Group is dead: Can be always captured locally
● Group is in seki: Cannot form two eyes, but 

opponent cannot capture it
● Semeai: Capturing race between two groups



  

Go: Tactical Concepts

● Semeai: Capturing race between two groups, 
the one which captures first also kills the other

● Ladder: Player keeps escaping, but opponent 
always plays atari and eventually captures

– Extremely long move sequence, but easy 
even for beginners to read

● Net: Player plays a distant move preventing 
enemy group from escaping

appendix 2



  

Go: The Ko Rule

● Ko: The same board position cannot repeat in 
single game

● To re-take ko: Play a ko threat elsewhere on 
the board

– Opponent replies and ko can be re-taken
– Opponent connects ko and you can follow 

up on the threat
● Group is * in ko: Goal can be achieved if player 

wins a ko fight



  

Go:  Strategic Concepts

● Territory: Empty area where opponent cannot 
make live group anymore

● Moyo: Territorial framework part of which can 
be still reduced by the opponent (at the cost of 
turning the rest to territory)

● Influence: Using hard-to-kill group to attack 
weak group of the opponent

appendix 3



  

Ranking in Go

● Several rating systems
● We will use KGS server ranking system:

– 30kyu ... absolute beginner
– 15kyu ... average beginner after 4 weeks
– 5kyu – 1kyu ... intermediate player
– 1dan – 9dan ... advanced to expert ama.
– 1pro – 9pro ... professional player

● Handicaps based on rank difference



  

Solving Go

The Problem

Special Sub-Problems

Possible Approaches

Classic Solutions



  

Programming Game Solvers

● Move combinations in “game tree”
● Leaves assessed by “evaluation function”
● “Minimax” decision
● Heuristics:

– pruning
branches

– evaluation
order

– transpositions



  

What's So Hard?

● Extreme branching factor
– Chess: 101 2 6 ; Go: 103 6 0

– Transposition tables are ineffective
● Evaluation function is difficult

– Has to take into account changing
status of stones

– Influence, territory-moyo hard to assess
● Pruning branches is difficult

– Universal pruning function hard to find



  

Specialized Sub­Problems

● Playing perfect late endgame (Berlekamp,1994)
– Combinatorial Game Theory, performs 

better than professional players
– Does not scale before last few moves

● Solving tsumego problems
– Small board sub-section, short sequence
– Best solvers can find the move in few 

seconds (Wolf, 2007)



  

How To Do It?

● alpha,beta search + hand-coded patterns
– GNUGO, weaker MFoG, ~6kyu

● Neural networks, pure (auto-gen.) patterns
– Unsuccessful in general (~15-20kyu?)

(Ezenberger, 1996)
● Monte Carlo, Monte Carlo Tree Search

– Most modern bots, on commodity HW
up to ~1-2dan (on 9x9, up to ~4dan?)



  

Classic Approach

● GNUGO – complex classic knowledge, many 
hand-coded patterns, alpha,beta search

– Very useful test opponent for MC bots
● Frequently misses moves – overpruning

– Causes major tactical mistakes
● Drastic misjudgements of group status
● Points-greedy move choice (cannot adjust style 

for disparate situation)
● Strength does not scale with time



  

Monte Carlo and UCT

Monte Carlo Approach

Multi-armed Bandits

Upper Confidence Trees



  

Monte Carlo Go

● Basic idea: evaluate a position by playing many 
random games (simulations) and averaging the 
outcome

● Primitive: Run N simulations for each valid 
move, pick the one with best value (reward) 
(Bruegmann, 1993) 



  

Monte Carlo Go

● Basic idea: evaluate a position by playing many 
random games (simulations) and averaging the 
outcome

● Primitive: Run N simulations for each valid 
move, pick the one with best value (reward) 
(Bruegmann, 1993) 

● Outcome coding:
– points_difference: too unstable
– 0,1 (loss,win): usual approach
– 0.01 for pts difference is slight bonus



  

Monte Carlo Tree Search

● Primitive MC cannot converge to best result
– Does not discover forced sequences

● Tree Search: Explore best replies of best replies 
of best replies of best replies of best moves... 
(minimax tree)

● Exploration vs exploitation:
– Focus simulations on the best candidates
– Make sure we know which are the best



  

Multi­armed Bandit

● => Multi-armed bandit 
● Each node has urgency

based on value and
amount of exploration

● Urgency policy: Minimize
regret – expected total
loss caused by selecting
suboptimal nodes



  

Multi­armed Bandit

● => Multi-armed bandit 
● Each node has urgency

based on value and
amount of exploration

● Urgency policy: Minimize
regret – expected total
loss caused by selecting
suboptimal nodes

● Several approaches: ε-greedy, upper confidence 
bounds



  

Upper Confidence Bound

● urgency = value + bias
● value = wins / simulations
● bias = UCB1 (Auer, 2002) – upper bound on 

possible value

● c is parameter; best for Go ~0.2
● Optimistic strategy – try most promising node

c ln n0n



  

UCB1 Hardcore
(supplementary slide)

● (Lai & Robbins, 1985) Maximum regret:

● D(P|Q) – Kullback-Leibler divergence

● In these policies, optimal node is selected 
exponentially more often than second best

E [T jn]≤ 1
D  p j∥p

o1 ln n 

D P∥Q =∫P ln  PQ 



  

Upper Confidence Tree

● Minimax tree with UCB-based urgencies
(Kocsis & Szepesvari, 2006)

● Leaf node: MC simulation, expand after k visits
● Online algorithm – can be stopped anytime and 

give meaningful result
– Final move selection: node with highest 

#simulations
● Converges – given unlimited time, will find 

optimal solution



  

MCTS: Other Applications

● General planning tasks with large search space 
and stochastic evaluation function

● Other games (Poker, Amazons, Arima, ...)
● Robot online task planning
● Sailing “auto-navigator”
● Etc. etc.



  

Better Simulations

Basic Implementation

Trivial Heuristics

Local Patterns

Caveats!



  

Uniformly Random...

● In each move, pick a random element from set 
of legal moves \ pass

● Never fill single-point eyes
● Common termination rule:

– Pass only if no valid move remains
– => Easy + fast counting
– Mercy rule

appendix 4



  

Playout Requirements

● Speed – more simulations means deeper tree 
and more accurate values

● Plausibility – situations should be resolved like 
in real game

                             X
● Balance – all reasonable results should have 

chance to appear in playouts



  

Simple Heuristics

● Hard to find heuristics that don't fail often
● Capture stones in atari vs. escape with stones 

in atari (possibly detect ladders)
– Except when the stones cannot escape

● Do not self-atari – but sometimes do!
– Putting large group in atari instead of 

connecting is bad
– Self-atari of your stones in opponent's 

dead eyespace is necessary
● 2-liberty tactics similar to atari tactics



  

3x3 Patterns

● ~10 wildcard 3x3 patterns centered at 
candidate move (Gelly, 2006)

● Considered only around last move
● => Produces “nice” local sequences
● 3x3 patterns = 16bit numbers => Very fast

appendix 5



  

Balanced Patterns

● Stronger playout is not better playout!
– Imbalance => consistently biased 

assessment of situation, UCT misbehave
● Fresh approach – machine learning of patterns 

based on playout balance, not strength
– (Silver, 2009) Don't minimize error but 

expected error – error over multiple 
moves in row (small mistakes cancel)

– Significant improvement on 5x5 board, 
not researched yet on larger boards



  

Better Tree Search

Prior Node Values

All Moves As First

Rapid Action EValuation

Progressive Widening

Multithreaded Search



  

Fresh Nodes

● UCT: Play each node once first – too ineffective
● First Play Urgency: Initialize urgency with 

fixed value (~1.2), start UCB-selecting nodes
● Priors: Initialize value heuristically

– => “Progressive unpruning/widening”
– Playout policy hinting – capture, atari,

3x3 patterns, eye filling
– Distance from board border
– CFG distance from last move
– Smart static evaluation function



  

Common Fate Graph

(Graepel, 2001)
● Intersections: vertices, lines: edges
● Edges between same color: d=0, others: d=1
● CFG distance: shortest path in CFG

– Useful for concept of “tactical locality”
– Takes into account all moves affecting 

local groups



  

All Moves As First

● UCT converges very slowly especially on large 
boards – no information sharing

● Idea: Find out and prefer moves that give good 
performance in all games (Bruegmann, 1993)

● UCT value of M: Winrate of games starting by M
● AMAF value of M: Winrate of games where we 

played M in the rest of the game(!)
● Moves in-tree and in most of playout are 

considered (nakade or last 1/3 of playout cut)



  

Rapid Action Evaluation

● How to incorporate AMAF in node value?
(Gelly & Silver, 2007)

● value = β × amafval + (1-β) × uctval

● With small uctsims, β ~ 1, but goes → 0
● r: RAVE weight (“equivalence”) parameter, 

usually ~3000

=amafsims×amafsimsuctsimsamafsims×uctsimsr 
−1



  

RAVE Aftermath

● Key result in MCTS Go, making it stronger 
than classical engines:

– ~ 30% UCT  70% UCT-RAVE→
● Good playout policy is crucial for good AMAF!
● Priors: amafval vs uctval – small difference

– Important new prior: “Even game” p=0.5 
protects against inaccurate first results

● No exploration: Best results with c=0 on 19x19 
(c=~0.005 on 9x9) – AMAF is sufficiently noisy



  

RAVE Performance



  

Criticality

● (Coulom, 2009) Focus on places that are “key” 
for both players – owning the point is important 
for winning the game

● Similar to AMAF, but:
– Covariance of winrates for both players
– Ownership of point, not play of stone

● Small improvement (49%  54%)→

v x 
N

− wx N
W
N


b x 
N

B
N 



  

Parallel MCTS

(Chaslot, 2008)
● Root-level – independent search in each 

thread, merge at the end
– Threads “vote” on best move
– Slight-to-medium improvement,

does not seem to scale much
● Leaf-level – single thread searches, all threads 

play in parallel
– More accurate node value
– Small improvement, large overhead



  

Parallel MCTS in­tree

● In-tree – all threads search in the same tree
– No locking necessary if we are careful 

(Enzenberger, 2009)
– Never delete nodes during search
– Update values atomically
– Virtual loss spreads exploration (add loss 

in descend, remove during update)



  

Parallel Performance
(9x9 vs GNUGo)

5000 x 1 Sequential Root In-tree In-tree, vloss
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Learning Patterns

Pattern Features

ELO Pattern Ranking

Storing Patterns

Pattern Usage



  

Pattern Usage

● Wildcard 3x3 
centered patterns: 
see before

● Circular n-radius 
patterns – hash 
matching

● Arbitrarily shaped 
patterns: incremental 
decision trees

● Shape matching only
● Tactical goal matching
● Point owner matching

● Used both in playouts 
(simplified) and in 
priors (full features 
set)



  

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)



  

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)
● Initialization: Each point gets assigned random 

numbers b, w
● Position: XOR of b values for all black stones 

and w values for all white stones
● Good uniform distribution, reasonable hash size
● Incremental updates on move plays possible!



  

Shape Patterns

● Represented as zobrist hashes of the area
– All rotations and color reversals
– Matching can be incremental for

multiple shape sizes
– Lookup is very fast

● Extended board with special “edge color” - 
already common in fast board implementations



  

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric:

d(x,y) = |dx| + |dy| 
   + max(|dx|,|dy|)

● Incrementally matched 
nested circles

● Commonly used



  

Arbitrary Shapes

● Hard to recognize and harvest automatically, 
useful mostly for expert patterns

● Use probably uncommon



  

Arbitrary Shapes

● Hard to recognize and harvest automatically, 
useful mostly for expert patterns

● Use probably uncommon
● Proposed method: Incremental Patricia trees 

(Boon, 2009)
– Build a decision tree (node-per-

intersection) from the patterns
– For each intersection, store nodes from 

decision trees
– When the point changes, re-walk branch



  

Pattern Features

● For each candidate move, pattern is matched
● Shape – as just described
● Capture, atari, selfatari, liberty counts, ko...

(van der Werf, 2002)
● Distance to last, next-to-last move

– CFG distance or circular distance
● MonteCarlo owner – portion of simulations 

where I am point owner at the game end
● Each feature can have its zobrist hash



  

Elo Ratings

● Elo: Putting competitive strength of many 
individuals on a single scale (Elo, 1978)

● Used in Chess and Go to rate players strength
● Based on Bradley-Terry model:

– Each individual has strength γ

– P(i beats j) = γ
i
 / (γ

i
 + γ

j
)

● Works for competition of >2 players too

● Works for teams: γ
1
γ

3
 / (γ

1
γ

2
γ

3
 + γ

1
γ

2
 + γ

1
γ

3
)

● Makes rather strong assumptions



  

Elo Patterns

● Key result: 38.2%  90% → (Coulom, 2007)
● Consider teams of pattern features, assign each 

feature its “strength”
– capture=30, atari=1.7 self-atari=0.06

● Total strength of each intersection is product of 
features strength

● Produces probability distribution over moves
● Use to choose next move in playout; only easy 

features (e.g. shapes up to 3x3) are used
● Use to progressively unprune nodes



  

Current Programs

● Mogo – UCT pioneer
● CrazyStones – Elo
● ManyFaces – UCT+classic
● Zen – Elo reimplemented?

Opensource UCT:
● Fuego – complex, general
● Pachi – simple, Go focus



  

Current Strength

● WCCI 2010 Barcelona
● @9x9: MoGoTW -9p, +9p; MoGo -4p, -4p;

          Fuego -4p, +4p, -9p, -9p;
          Zen +6d, +6d, -6d, +6d

● @13x13H2: MoGo +6d, +6d; Fuego -6d, -6d;    
                    MFoG -6d, +6d

● @19x19: Zen -9p@H7, +4p@H6;
              MFoG -4p@H6, -9p@H7

● http://wcci2010.nutn.edu.tw/result.htm
● MoGo: 15x8c, BlueFuego: 112c w/ shared mem.

http://wcci2010.nutn.edu.tw/result.htm


  

Pachi

● Densely-commented C code, about 5k LOC
● Modular architecture for play engines

(random, playout, MonteCarlo, UCT)
● Modular architecture for UCT policies

(UCB1, UCB1AMAF/RAVE)
● Modular architecture for playout policies 

(random, “Moggy”, probability distribution)
● Root-level or in-tree parallelism (modular)
● Autotest – generic UNIX framework for testing 

of stochastic engines performance



  

Unsolved Problems

Handling extreme 
situations

Narrow sequences

HPC implementation

Aesthetically
pleasing play

Abstract understanding
of the board



  

Playing in Extreme Situations

● Extreme situation: The computer has either 
huge advantage or huge disadvantage

● Common in handicap games
● Black: big advantage – suboptimal moves, no 

account for difference in strength
● White: big disadvantage – the problem is not 

so visible and harder to solve
● Interpretation: Too low signal-noise ratio when 

outlook is extreme



  

Black in Handicap

● Linear dynamic komi, online dynamic komi, 
artificial passes

● Dynamic komi: Before counting final position 
in the simulation, subtract certain amount of 
points from black score

● Online komi: Adjust komi to keep probabilities 
between ~[0.4,0.5]; universal (not only 
handicap games), ~57% self-play

– Fixed step or avgscore-based step



  

Linear Dynamic Komi

● Linear DK: Calculate komi value K based on 
handicap amount

● K ~= -cH where c is point value of handi stone
– c=8 (based on default komi value)

seems optimal; non-linear scaling 
experiments discouraging

● Apply for first M moves: k = K(1-m/M)
● M=200 works well on 19x19



  

Handicap Performance
(19x19 vs GNUGo level 10)



  

Narrow Sequences

● The most visible and probably most important 
current issue

● UCT/RAVE bots miserably fail in most semeai 
situations, some classes of unsettled tsumego 
and sometimes even misread simple ladders

● RAVE gives single-level information, same 
problem as Monte Carlo vs UCT



  

Narrow Sequences:
The Problem

● General situation description: After one player's 
move X, the other player has one right reply Y* 
(winrate converges) and many wrong replies 
{Y-} (winrate diverges)

● All replies have equal simulation probability, 
giving player's move X too high winrate

● Thus, RAVE gives the move massive bias 
everywhere in the tree; tree quickly discovers 
Y*, but this only pushes X down in tree



  

Narrow Sequences: Solutions?

● Common: Enhance simulations to natively 
choose Y* after X with high probability

– Simulations must be fast, only static 
evaluation reasonably possible,
case-by-case, tedious

● Prefer best local moves found by tree search in 
simulations?

● Pre-bias node values based on local sequences 
found in other tree branches?

● Preliminary results promising, still researching



  

High Performance Computing

● Big clusters tried – Mogo on 900 cores etc.
● Mix of root and tree parallelization
● Scaling limits: overhead, limited information 

sharing
● GPGPU needs a lot of research, preliminary 

experiments not too encouraging
– Game parallelization – playout / thread
– Point parallelization – intersection / thread



  

Aesthetically Pleasing Play

● Computers like to play “strange-looking” moves
● Unclear if solving these problems would 

improve win rate
● Playing opening moves very far from the edge
● Playing suboptimal moves at the game end 

when win is secured



  

Abstract Understanding

● Useful since simulations cannot be deep enough 
to assess true values of some aspects

● E.g. solidness of territory and groups,
thickness value, ko fights status, latent aji

● Maybe ManyFaces does it to a degree,
no published results; can be obsoleted
by narrow sequences solution

● Describe point/chain dynamics as polynomial 
system (nice prediction results, in research – 
Wolf, 2009 preprint)



  

Thank you!

pasky@ucw.cz
http://pasky.or.cz/~pasky/go/

http://senseis.xmp.net/

http://gokgs.com/
http://computer-go.org/

http://www.citeulike.org/group/5884/library

mailto:pasky@ucw.cz
http://senseis.xmp.net/
http://computer-go.org/
http://www.citeulike.org/group/5884/library
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