

Current Concepts
in Computer Go

Petr Baudis, 2010

Outline

● What is Go and why is it interesting
● Possible approaches to solving Go
● Monte Carlo and UCT
● Enhancing the MC simulations
● Enhancing the tree search
● Automatic pattern extraction
● Unsolved problems

What is Go

History

Concepts

Rules

Basic Tactics

The Go Board Game

● Go / Igo / Goe / Baduk / Wei-Qi
● ~3000 years old - the oldest board game
● Very simple rules, very high complexity
● Wide-spread in China, Korea, Japan
● Rich culture surrounds the game
● http://senseis.xmp.net/

Go: Basic Concepts

● Square board with 19x19 intersections
– Small board variation with 9x9

● Black and white players alternate in placing
stones on the intersections

● Stones do not move; they can be removed if
completely surrounded

● Players surround territory and capture enemy
stones

appendix 1

Go: Capturing Stones

● Directly connected stones == group
● #of unoccupied intersections around group ==

liberties
● When group has no liberties, it is removed
● Removed group: capture; single lib.: atari
● Ko rule - later

Go: Tromp­Taylor Rules

● Players place stones alternately
● If the board is filled, players play “pass”
● The player controlling more intersections wins
● Eye: empty places completely surrounded by

stones of one color
● Controlling intersection: Either occupied by a

stone, or an eye of given color
● Komi: Point bonus for white

final position – appendix 4

Go: Other Rulesets

● Many Go rulesets: Tromp-Taylor, Chinese,
Japanese, ...

● Tromp-Taylor: Formal, terse, easy for
computers

● Japanese: Easier for humans, most common,
hard for computers; slightly different counting

● All rulesets are equivalent or 1pt-equivalent in
common situations

Go: Life and Death

● So much for the rules; now basic tactics!
● Group is alive: Can form two eyes
● Group is dead: Can be always captured locally
● Group is in seki: Cannot form two eyes, but

opponent cannot capture it
● Semeai: Capturing race between two groups

Go: Tactical Concepts

● Semeai: Capturing race between two groups,
the one which captures first also kills the other

● Ladder: Player keeps escaping, but opponent
always plays atari and eventually captures

– Extremely long move sequence, but easy
even for beginners to read

● Net: Player plays a distant move preventing
enemy group from escaping

appendix 2

Go: The Ko Rule

● Ko: The same board position cannot repeat in
single game

● To re-take ko: Play a ko threat elsewhere on
the board

– Opponent replies and ko can be re-taken
– Opponent connects ko and you can follow

up on the threat
● Group is * in ko: Goal can be achieved if player

wins a ko fight

Go: Strategic Concepts

● Territory: Empty area where opponent cannot
make live group anymore

● Moyo: Territorial framework part of which can
be still reduced by the opponent (at the cost of
turning the rest to territory)

● Influence: Using hard-to-kill group to attack
weak group of the opponent

appendix 3

Ranking in Go

● Several rating systems
● We will use KGS server ranking system:

– 30kyu ... absolute beginner
– 15kyu ... average beginner after 4 weeks
– 5kyu – 1kyu ... intermediate player
– 1dan – 9dan ... advanced to expert ama.
– 1pro – 9pro ... professional player

● Handicaps based on rank difference

Solving Go

The Problem

Special Sub-Problems

Possible Approaches

Classic Solutions

Programming Game Solvers

● Move combinations in “game tree”
● Leaves assessed by “evaluation function”
● “Minimax” decision
● Heuristics:

– pruning
branches

– evaluation
order

– transpositions

What's So Hard?

● Extreme branching factor
– Chess: 101 2 6 ; Go: 103 6 0

– Transposition tables are ineffective
● Evaluation function is difficult

– Has to take into account changing
status of stones

– Influence, territory-moyo hard to assess
● Pruning branches is difficult

– Universal pruning function hard to find

Specialized Sub­Problems

● Playing perfect late endgame (Berlekamp,1994)
– Combinatorial Game Theory, performs

better than professional players
– Does not scale before last few moves

● Solving tsumego problems
– Small board sub-section, short sequence
– Best solvers can find the move in few

seconds (Wolf, 2007)

How To Do It?

● alpha,beta search + hand-coded patterns
– GNUGO, weaker MFoG, ~6kyu

● Neural networks, pure (auto-gen.) patterns
– Unsuccessful in general (~15-20kyu?)

(Ezenberger, 1996)
● Monte Carlo, Monte Carlo Tree Search

– Most modern bots, on commodity HW
up to ~1-2dan (on 9x9, up to ~4dan?)

Classic Approach

● GNUGO – complex classic knowledge, many
hand-coded patterns, alpha,beta search

– Very useful test opponent for MC bots
● Frequently misses moves – overpruning

– Causes major tactical mistakes
● Drastic misjudgements of group status
● Points-greedy move choice (cannot adjust style

for disparate situation)
● Strength does not scale with time

Monte Carlo and UCT

Monte Carlo Approach

Multi-armed Bandits

Upper Confidence Trees

Monte Carlo Go

● Basic idea: evaluate a position by playing many
random games (simulations) and averaging the
outcome

● Primitive: Run N simulations for each valid
move, pick the one with best value (reward)
(Bruegmann, 1993)

Monte Carlo Go

● Basic idea: evaluate a position by playing many
random games (simulations) and averaging the
outcome

● Primitive: Run N simulations for each valid
move, pick the one with best value (reward)
(Bruegmann, 1993)

● Outcome coding:
– points_difference: too unstable
– 0,1 (loss,win): usual approach
– 0.01 for pts difference is slight bonus

Monte Carlo Tree Search

● Primitive MC cannot converge to best result
– Does not discover forced sequences

● Tree Search: Explore best replies of best replies
of best replies of best replies of best moves...
(minimax tree)

● Exploration vs exploitation:
– Focus simulations on the best candidates
– Make sure we know which are the best

Multi­armed Bandit

● => Multi-armed bandit
● Each node has urgency

based on value and
amount of exploration

● Urgency policy: Minimize
regret – expected total
loss caused by selecting
suboptimal nodes

Multi­armed Bandit

● => Multi-armed bandit
● Each node has urgency

based on value and
amount of exploration

● Urgency policy: Minimize
regret – expected total
loss caused by selecting
suboptimal nodes

● Several approaches: ε-greedy, upper confidence
bounds

Upper Confidence Bound

● urgency = value + bias
● value = wins / simulations
● bias = UCB1 (Auer, 2002) – upper bound on

possible value

● c is parameter; best for Go ~0.2
● Optimistic strategy – try most promising node

c ln n0n

UCB1 Hardcore
(supplementary slide)

● (Lai & Robbins, 1985) Maximum regret:

● D(P|Q) – Kullback-Leibler divergence

● In these policies, optimal node is selected
exponentially more often than second best

E [T jn]≤ 1
D  p j∥p

o1 ln n 

D P∥Q =∫P ln  PQ 

Upper Confidence Tree

● Minimax tree with UCB-based urgencies
(Kocsis & Szepesvari, 2006)

● Leaf node: MC simulation, expand after k visits
● Online algorithm – can be stopped anytime and

give meaningful result
– Final move selection: node with highest

#simulations
● Converges – given unlimited time, will find

optimal solution

MCTS: Other Applications

● General planning tasks with large search space
and stochastic evaluation function

● Other games (Poker, Amazons, Arima, ...)
● Robot online task planning
● Sailing “auto-navigator”
● Etc. etc.

Better Simulations

Basic Implementation

Trivial Heuristics

Local Patterns

Caveats!

Uniformly Random...

● In each move, pick a random element from set
of legal moves \ pass

● Never fill single-point eyes
● Common termination rule:

– Pass only if no valid move remains
– => Easy + fast counting
– Mercy rule

appendix 4

Playout Requirements

● Speed – more simulations means deeper tree
and more accurate values

● Plausibility – situations should be resolved like
in real game

 X
● Balance – all reasonable results should have

chance to appear in playouts

Simple Heuristics

● Hard to find heuristics that don't fail often
● Capture stones in atari vs. escape with stones

in atari (possibly detect ladders)
– Except when the stones cannot escape

● Do not self-atari – but sometimes do!
– Putting large group in atari instead of

connecting is bad
– Self-atari of your stones in opponent's

dead eyespace is necessary
● 2-liberty tactics similar to atari tactics

3x3 Patterns

● ~10 wildcard 3x3 patterns centered at
candidate move (Gelly, 2006)

● Considered only around last move
● => Produces “nice” local sequences
● 3x3 patterns = 16bit numbers => Very fast

appendix 5

Balanced Patterns

● Stronger playout is not better playout!
– Imbalance => consistently biased

assessment of situation, UCT misbehave
● Fresh approach – machine learning of patterns

based on playout balance, not strength
– (Silver, 2009) Don't minimize error but

expected error – error over multiple
moves in row (small mistakes cancel)

– Significant improvement on 5x5 board,
not researched yet on larger boards

Better Tree Search

Prior Node Values

All Moves As First

Rapid Action EValuation

Progressive Widening

Multithreaded Search

Fresh Nodes

● UCT: Play each node once first – too ineffective
● First Play Urgency: Initialize urgency with

fixed value (~1.2), start UCB-selecting nodes
● Priors: Initialize value heuristically

– => “Progressive unpruning/widening”
– Playout policy hinting – capture, atari,

3x3 patterns, eye filling
– Distance from board border
– CFG distance from last move
– Smart static evaluation function

Common Fate Graph

(Graepel, 2001)
● Intersections: vertices, lines: edges
● Edges between same color: d=0, others: d=1
● CFG distance: shortest path in CFG

– Useful for concept of “tactical locality”
– Takes into account all moves affecting

local groups

All Moves As First

● UCT converges very slowly especially on large
boards – no information sharing

● Idea: Find out and prefer moves that give good
performance in all games (Bruegmann, 1993)

● UCT value of M: Winrate of games starting by M
● AMAF value of M: Winrate of games where we

played M in the rest of the game(!)
● Moves in-tree and in most of playout are

considered (nakade or last 1/3 of playout cut)

Rapid Action Evaluation

● How to incorporate AMAF in node value?
(Gelly & Silver, 2007)

● value = β × amafval + (1-β) × uctval

● With small uctsims, β ~ 1, but goes → 0
● r: RAVE weight (“equivalence”) parameter,

usually ~3000

=amafsims×amafsimsuctsimsamafsims×uctsimsr 
−1

RAVE Aftermath

● Key result in MCTS Go, making it stronger
than classical engines:

– ~ 30% UCT 70% UCT-RAVE→
● Good playout policy is crucial for good AMAF!
● Priors: amafval vs uctval – small difference

– Important new prior: “Even game” p=0.5
protects against inaccurate first results

● No exploration: Best results with c=0 on 19x19
(c=~0.005 on 9x9) – AMAF is sufficiently noisy

RAVE Performance

Criticality

● (Coulom, 2009) Focus on places that are “key”
for both players – owning the point is important
for winning the game

● Similar to AMAF, but:
– Covariance of winrates for both players
– Ownership of point, not play of stone

● Small improvement (49% 54%)→

v x 
N

− wx N
W
N


b x 
N

B
N 

Parallel MCTS

(Chaslot, 2008)
● Root-level – independent search in each

thread, merge at the end
– Threads “vote” on best move
– Slight-to-medium improvement,

does not seem to scale much
● Leaf-level – single thread searches, all threads

play in parallel
– More accurate node value
– Small improvement, large overhead

Parallel MCTS in­tree

● In-tree – all threads search in the same tree
– No locking necessary if we are careful

(Enzenberger, 2009)
– Never delete nodes during search
– Update values atomically
– Virtual loss spreads exploration (add loss

in descend, remove during update)

Parallel Performance
(9x9 vs GNUGo)

5000 x 1 Sequential Root In-tree In-tree, vloss

0

10

20

30

40

50

60

70

80

90

5000 x 4

Learning Patterns

Pattern Features

ELO Pattern Ranking

Storing Patterns

Pattern Usage

Pattern Usage

● Wildcard 3x3
centered patterns:
see before

● Circular n-radius
patterns – hash
matching

● Arbitrarily shaped
patterns: incremental
decision trees

● Shape matching only
● Tactical goal matching
● Point owner matching

● Used both in playouts
(simplified) and in
priors (full features
set)

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)
● Initialization: Each point gets assigned random

numbers b, w
● Position: XOR of b values for all black stones

and w values for all white stones
● Good uniform distribution, reasonable hash size
● Incremental updates on move plays possible!

Shape Patterns

● Represented as zobrist hashes of the area
– All rotations and color reversals
– Matching can be incremental for

multiple shape sizes
– Lookup is very fast

● Extended board with special “edge color” -
already common in fast board implementations

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric:

d(x,y) = |dx| + |dy|
 + max(|dx|,|dy|)

● Incrementally matched
nested circles

● Commonly used

Arbitrary Shapes

● Hard to recognize and harvest automatically,
useful mostly for expert patterns

● Use probably uncommon

Arbitrary Shapes

● Hard to recognize and harvest automatically,
useful mostly for expert patterns

● Use probably uncommon
● Proposed method: Incremental Patricia trees

(Boon, 2009)
– Build a decision tree (node-per-

intersection) from the patterns
– For each intersection, store nodes from

decision trees
– When the point changes, re-walk branch

Pattern Features

● For each candidate move, pattern is matched
● Shape – as just described
● Capture, atari, selfatari, liberty counts, ko...

(van der Werf, 2002)
● Distance to last, next-to-last move

– CFG distance or circular distance
● MonteCarlo owner – portion of simulations

where I am point owner at the game end
● Each feature can have its zobrist hash

Elo Ratings

● Elo: Putting competitive strength of many
individuals on a single scale (Elo, 1978)

● Used in Chess and Go to rate players strength
● Based on Bradley-Terry model:

– Each individual has strength γ

– P(i beats j) = γ
i
 / (γ

i
 + γ

j
)

● Works for competition of >2 players too

● Works for teams: γ
1
γ

3
 / (γ

1
γ

2
γ

3
 + γ

1
γ

2
 + γ

1
γ

3
)

● Makes rather strong assumptions

Elo Patterns

● Key result: 38.2% 90% → (Coulom, 2007)
● Consider teams of pattern features, assign each

feature its “strength”
– capture=30, atari=1.7 self-atari=0.06

● Total strength of each intersection is product of
features strength

● Produces probability distribution over moves
● Use to choose next move in playout; only easy

features (e.g. shapes up to 3x3) are used
● Use to progressively unprune nodes

Current Programs

● Mogo – UCT pioneer
● CrazyStones – Elo
● ManyFaces – UCT+classic
● Zen – Elo reimplemented?

Opensource UCT:
● Fuego – complex, general
● Pachi – simple, Go focus

Current Strength

● WCCI 2010 Barcelona
● @9x9: MoGoTW -9p, +9p; MoGo -4p, -4p;

 Fuego -4p, +4p, -9p, -9p;
 Zen +6d, +6d, -6d, +6d

● @13x13H2: MoGo +6d, +6d; Fuego -6d, -6d;
 MFoG -6d, +6d

● @19x19: Zen -9p@H7, +4p@H6;
 MFoG -4p@H6, -9p@H7

● http://wcci2010.nutn.edu.tw/result.htm
● MoGo: 15x8c, BlueFuego: 112c w/ shared mem.

http://wcci2010.nutn.edu.tw/result.htm

Pachi

● Densely-commented C code, about 5k LOC
● Modular architecture for play engines

(random, playout, MonteCarlo, UCT)
● Modular architecture for UCT policies

(UCB1, UCB1AMAF/RAVE)
● Modular architecture for playout policies

(random, “Moggy”, probability distribution)
● Root-level or in-tree parallelism (modular)
● Autotest – generic UNIX framework for testing

of stochastic engines performance

Unsolved Problems

Handling extreme
situations

Narrow sequences

HPC implementation

Aesthetically
pleasing play

Abstract understanding
of the board

Playing in Extreme Situations

● Extreme situation: The computer has either
huge advantage or huge disadvantage

● Common in handicap games
● Black: big advantage – suboptimal moves, no

account for difference in strength
● White: big disadvantage – the problem is not

so visible and harder to solve
● Interpretation: Too low signal-noise ratio when

outlook is extreme

Black in Handicap

● Linear dynamic komi, online dynamic komi,
artificial passes

● Dynamic komi: Before counting final position
in the simulation, subtract certain amount of
points from black score

● Online komi: Adjust komi to keep probabilities
between ~[0.4,0.5]; universal (not only
handicap games), ~57% self-play

– Fixed step or avgscore-based step

Linear Dynamic Komi

● Linear DK: Calculate komi value K based on
handicap amount

● K ~= -cH where c is point value of handi stone
– c=8 (based on default komi value)

seems optimal; non-linear scaling
experiments discouraging

● Apply for first M moves: k = K(1-m/M)
● M=200 works well on 19x19

Handicap Performance
(19x19 vs GNUGo level 10)

Narrow Sequences

● The most visible and probably most important
current issue

● UCT/RAVE bots miserably fail in most semeai
situations, some classes of unsettled tsumego
and sometimes even misread simple ladders

● RAVE gives single-level information, same
problem as Monte Carlo vs UCT

Narrow Sequences:
The Problem

● General situation description: After one player's
move X, the other player has one right reply Y*
(winrate converges) and many wrong replies
{Y-} (winrate diverges)

● All replies have equal simulation probability,
giving player's move X too high winrate

● Thus, RAVE gives the move massive bias
everywhere in the tree; tree quickly discovers
Y*, but this only pushes X down in tree

Narrow Sequences: Solutions?

● Common: Enhance simulations to natively
choose Y* after X with high probability

– Simulations must be fast, only static
evaluation reasonably possible,
case-by-case, tedious

● Prefer best local moves found by tree search in
simulations?

● Pre-bias node values based on local sequences
found in other tree branches?

● Preliminary results promising, still researching

High Performance Computing

● Big clusters tried – Mogo on 900 cores etc.
● Mix of root and tree parallelization
● Scaling limits: overhead, limited information

sharing
● GPGPU needs a lot of research, preliminary

experiments not too encouraging
– Game parallelization – playout / thread
– Point parallelization – intersection / thread

Aesthetically Pleasing Play

● Computers like to play “strange-looking” moves
● Unclear if solving these problems would

improve win rate
● Playing opening moves very far from the edge
● Playing suboptimal moves at the game end

when win is secured

Abstract Understanding

● Useful since simulations cannot be deep enough
to assess true values of some aspects

● E.g. solidness of territory and groups,
thickness value, ko fights status, latent aji

● Maybe ManyFaces does it to a degree,
no published results; can be obsoleted
by narrow sequences solution

● Describe point/chain dynamics as polynomial
system (nice prediction results, in research –
Wolf, 2009 preprint)

Thank you!

pasky@ucw.cz
http://pasky.or.cz/~pasky/go/

http://senseis.xmp.net/

http://gokgs.com/
http://computer-go.org/

http://www.citeulike.org/group/5884/library

mailto:pasky@ucw.cz
http://senseis.xmp.net/
http://computer-go.org/
http://www.citeulike.org/group/5884/library

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

