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ABSTRACT

The Monte Carlo Tree Search in the game of Go tends to prochstahlie and unreasonable results
when used in situations of extreme advantage or disadvandag to poor move selection because of
low signal-to-noise ratio; notably, this occurs when phayin high handicap games, burdening the
computer with further disadvantage against the strong huopponent. We explore and compare
multiple approaches to mitigate this problem by artifigiakening out the game based on modi-
fication of the final game score by variable amount of pointlyifamic komi”) before storing the
result in the game tree. We also compare performance of M@itiSraditional tree search in the
context of extreme situations and measure the effect ofrdimlaomi on actual playing strength of a
state-of-art MCTS Go program. Based on our results, we asgencture on resilience of the game
search tree to changes in the evaluation function throughewsearch.

This work has not been submitted to peer review and official pblication yet and is a work-in-progress, for
your review only. Version 20110724a.

1. INTRODUCTION

The board game of Go has proven to be a challenge for traditiggme-playing algorithms. Recently, the
approach of using Monte Carlo simulations organized in dabdistic minimax tree finally made significant
headways in playing strength, far outperforming any othhegmammatic approaches and achieving the level of
advanced human Go players on standard-sized boards anet heast on small boards (Gelly and Silver, 2008).
However, multiple obstacles hinder the effectivity of theme Carlo Tree Search (MCTS) approach.

To recapitulate, Go is a two-player full-information bogyame played with black and white stones on a square
grid (we shall assume siZé x 19 lines unless noted otherwise); the goal of the game is tmsod the most
territory and capture enemy stones. We assume basic fatyilidth the game.

The Monte Carlo approach tries to solve the best move chaimaem in Go by performing many simulations

(randomized self-played games) per each candidate moee,dfoosing the move with the highest win rate.
It turns out that a major leap in strength can be achieved ligibg a game tree from the Monte Carlo simulations
and treating the decision in each node as a multi-armed bpratilem; the UCT algorithm was first to be used
for MCTS in Go programs. An additional improvement has be@ewnse information gathered in the simulations
within the tree search, resulting in the RAVE search albaritthat forms the basis of the current strongest
programs.

In section 2, we detail the state of art Monte Carlo Tree Setechnique used in computer Go (and our test
program Pachi in particular) and the problematic points tiea seek to address. In section 3, we outline our
approach to tackle the problem. In sections 4 and 5, we presgaral specific algorithms we have developed,
and we then measure and compare their performance in sécti&ventually, we note our conclusions and
outline future research directions in section 7.

lemail:pasky@ucw.cz. Supported by the GAUK Project 66010tar2s University Prague.
20riginally RAVE was concieved as UCT modification, but somegpams (including our Pachi test program) do not use the UCTHipe
term anymore, resulting in a wholly independent algorithm.
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2. BACKGROUND

2.1 The RAVE Search Algorithm

The RAVE search algorithm (Chaslet al, 2010) repeatedly descends the minimax tree, runs a Mome Ca
simulation from the reached tree leaf, propagates thetrieack through the tree and expands the tree leaf when
it is reachedn times® During the descent, for each node the algorithm chooseshitek with the maximum
value of:
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The terms in the equation represent:

e sims, wins is the number of simulations taken within the child and thenhar of won simulations,
respectively

e simsapmar, Wins Ay Ar has similar meaning, but all simulations from the curremtenawhere the player at
any point played the move represented by the child are ceresidso-called “all moves as first” heuristic)

e [ gives large weight to AMAF values inferred from sibling silations when few actual results are avail-
able and small weight when more simulations are run from theshevaluated node

The RAVE algorithm ensures that the most thoroughly seardoeles are the ones that yield the highest likeli-
hood of won simulation, giving initial search preferencertoves highly correlated with achieving a win in the
current situation in general.

The RAVE algorithm is usually complemented by other impatidomain-specific extensions — most notably,
prior values of newly expanded nodes are assigned heatlgtiand a lot of Go knowledge and heuristics are
used within the Monte Carlo simulations.

2.2 The Extreme Situation Problem

One common problem of the Monte Carlo based methods is thadg¢figition, they do not adapt well to extreme
situations, i.e. when faced with extreme advantage or exrdisadvantage This is due to the fact that MCTS
considers and maximizes expected win probability, not toeesmargin. If a game position is almost won, the
“safe—active” move that pushes the score margin forwarbhaile only slightly higher expected win expectation
than a move with essentially no effect, since so many ganeealegady implicitly won due to random noise in
the simulations.

A perfect example of such extreme situations occuring aatjulare handicap games. When two players of
different strength play together, a handicap is determiasda function of the rank difference of the players).
The handicap consists of the weaker player (always takiagkttolor) placing a given number of stones on the
board before the stronger player (white) gets to play henfisre. Usually, the handicap amount ranges between
one stongand nine stones. Thus, when playing against a beginnerytigggm can find itself choosing a move
to play on board with nine black stones already placed onegfi@points. Similarly, the program can begin
with many stones and almost all simulations being won at #ginming of e.g. an exhibition game against a
professional playéeft.

3We use the value = 2 in Pachi.

4See Figures 2a and 2b for comparison with a classical progeafarmance.

5The game begins as usual since black goes first in even gamelabuwelhite will not receive any compensation for black ptaythe
first move.

6This is especially troublesome since these games are hiditepnd the general software level in Computer Go tends to tigejd in
part by performance in these games.
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In practice, if a strong human player is faced with extrensadvantage in a handicap game, they tend to play
patiently and wait for opponent mistakes to catch up grdgiualeven games, they usually try to set up difficult-
to-read complications. An MCTS program however will seek thove that currently maximizes the expected
win probability — ideally, it would represent a sophistiedtrap, but in reality it tends to be rather the move the
random simulations mis-evaluate the most, ending up makiviglly refutable moves.

Similarly, a strong human in position of large advantagd sdlek to solidify their position, defend the last
remaining openings for attack and avoid complex sequendtsunclear result; then, they will continue to
enlarge their score margin if possible. MCTS program wilkeanoves with minimal effect on the safety of its
stones or territory and carelessly engage in sequenceshigithdanger of mistakes; it will maximize the win
expectation (of however biased and possibly misevaluaimglations) without regard to score margin, creating
the danger of losing the ganie.

3. THE DYNAMIC KOMI TECHNIQUE

One possible way of tackling the described problem is ugiegdynamic komi” technique. Komi is Go term for

a point penalty imposed on one of the players; e.g. in everegalack has the right of the first move, gines
white 7.5 komP as a compensation: at the game end,points will be added to white score as a compensation
for not moving first. (Conversely, komi value ef7.5 would beblack taking revers&.5 komiand receiving a
bonus of 7.5 points to her score at the game end; this woulddrereof white handicapping herself. In handicap
games, the usual komi — also used in our experiments 8-bistherefore ties are broken in favor of white but
white gets no compensation for moving second, being thagémplayer.)

The dynamic komi approach suggests that depending on thid bibaation, the program should adjust the inter-
nally used komi value to make the game more even — eithergitie program virtual advantage in case it is
losing in reality, or burdening it with virtual disadvangawhen it is winning too much in the actual gafhe.

We have decided to implement and test several approachgedmit komi. We test their performance in various
handicap settings (since it is an obvious and well-definednpte of the extreme situations described earlier) and
also general performance in even games (where the extrénagigns — with a chance of overtuning them —
can occur naturally time by time).

In the following text and algorithmic descriptions, we vaiisume the black player’s perspective — increasing the
komi means giving extra advantage to the opponent, decrgaise komi corresponds to taking extra advantage
on oneself. Real code needs to reverse the operations irtltasemputer is playing as white.

3.1 Prior Work

It has been long suggested especially by non-programmgenslén the Computer Go community to use the dy-
namic komi approach to balance the pure winrate orientatiddCTS, however it has been met with scepticism
from the program authors since it introduces artificial swaacy to the game tree and it was not clear how to deal
with it in a rigorous way.

However, during our research we have become aware that smme bf dynamic komi are used in some pro-
grams. Perhaps the first report of dynamic komi usage haspgwested by Hideki Kato (Kato, 2008). Many Faces
of Go uses an algorithm analogous to our Linearly Decreadi@wgdicap Compensation with slightly different

constants (Fotland, 2010). Hiroshi Yamashita has indegathd proposed an algorithm used in his program
Aya that is similar to our Score-based Situational Compmsaalong with some positive experimental results
(Yamashita, 2010).

7In our test program Pachi,04 of the win/loss value is actually allocated to reflect thersabfference, however the effect on larger win
margins preference appears to be very limited and the coretantt be raised further without incurring strength loss.

8The exact komi value may vary; fractional value is used to atieil

9The actual final score count is of course not affected by timanhjc komi and the opponent needs not even be aware of it; ieis arsly
to change internal evaluation of the simulations within thegpam.
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Figure 1: Performance in handicap games.

4. LINEARLY DECREASING HANDICAP COMPENSATION

The simplest approach we used successfully was to simpbiapmsmase handicap games and try to stabilize the
reading by imposing a komi on the program based on the nunilbemnalicap stones and linearly diminishing the
komi throughout the game:

Algorithm 1 LINEARHANDICAP

Require: MoveNum is the number of the current move to play.
if MoveNum > M then
Komi + 0
return
end if
KomiByHandicap < A - NumHandi
Komi + KomiByHandicap - (1 — MoveNum)

M denotes the number of moves for which the dynamic komi effeotild last; we have found the optimal value
to be around 200 (see Fig. 1d).is the point value of single handicap stone; values arounark Wwest for us
(Fig. 1b)10

We should note that we compute the exact komi value in thdeéedavhere we start the simulation. That implies
the nice property that even when reusing parts of the tree génerating a final move, each node has all games
played with the same komi. Since our next models will have uhgroperty, we have checked its effect; we
were not able to measure a statistically significant peréoroe decrease when applying the same komi value
computed on tree root in all simulations. Therefore, we m&sthat it is safe not to preserve this property.

5. SITUATIONAL COMPENSATION

A more sophisticated way to adjust komi throughout the gasredapting to the currently perceived situation
on the board. We are not limited to the case of handicap gamésietermining, implementing and tuning the
mechanism is more difficult.

The situational compensation can be decomposed to sevgratta: how to judge the current situation, how
often to re-adjust the komi, and how much to adjust the komaious phases of the game.

10The value of one extra handicap stone is twice the value obtiedard komi (Gailly, 2010) so approximately 14 points. Hesve
dynamic komi apparently works best when only a certain peacgnof handicap stone value is added to the komi. At any rakeasitin the
(4, 14) range the effect of this constant is very small.
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5.1 Situation Measure
5.1.1 Score-based Situational Compensation

One way to assess the situation is by observingettpected scoref the Monte Carlo simulations over a time
period (e.g. the previous move) and adjust the komi soEhabre] — Ayomi — 0.

Algorithm 2 SCORESITUATIONAL

Require: E[score] is the average score over reasonable amount of simulatiocisiding then-used dynamic
komi).
if MoveNum < 20 then
Komi <~ LINEARHANDICAP
return
end if
BoardOccupiedRatio <+ Occulflifglszgii?ions
GamePhase <— BoardOccupiedRatio + s
KomiRate < (1 + exp(c - GamePhase))~!
Komi + Komi + KomiRate - E[score]

This way (assuming > 0), at the game beginning we adjust the dynamic komi by medsawerage game result
(except the first few moves where meaningless fluctuatiomegpected to be large), up until a certain point in
the game when we dramatically reduce the amount of further kbanges. The phase parameteletermines
the point in the game when the phase shift happens.

The best values we have found are: 20 ands = 0.75, but they still perform worse than the approach presented
below. We have also tried other KomiRate transformatiorithout much success.

5.1.2 Value-based Situational Compensation

The other way to assess the game situation and amplify weiifferences between candidate tree nodes is to
look directly at the winrate values at the root of the tree adplist the komi to put the values within a certain
interval.

Algorithm 3 VALUE SITUATIONAL

Require: Value is the winning rate over reasonable amount of simulatiand{tling then-used dynamic komi).
if MoveNum < 20 then
Komi - LINEARHANDICAP
Ratchet < oo
return
end if
if Value < red then
if Komi > 0 then
Ratchet < Komi
end if
Komi < Komi — 1
else
if Value > green A Komi < Ratchet then
Komi + Komi + 1
end if
end if

We will divide the winrate value to three range®d (losing), yellow (highest winrate resolution), argteen
(winning). We will call the upper bound of red zoned, the lower bound of green zomggeen Our goal shall
then be to dynamically adjust the komi to keep the winratééytellow zone, that is betweeed andgreen
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Furthermore, we need to avoid “flapping” around critical kemiue especially in the endgame — when the true
score of the game is well established (i.e., very near theegam), winrate will be high with komi and much
lower with komin + 1. To alleviate this problem, we introduceatchetvariable recording the lowest komi for
which we reach red zone; we then never give this komi or morhis(applies only to giving extra komi to the
opponent when our situation is favorable; in case of neg&dmi compensating for unfavorable situation, we
are eager to flap into the red zone in order not to get fixed irmaeently lost position and keep trying to make
the game at least even again.) Optionally, the ratchet caineeafter several moves.

The optimal values we have found ared = 0.45, green = 0.5 — that is, locking oneself into a slightly
disadvantageous position, allowing to give the opponeraidwantage but never expiring the ratchet. This is
curious: in our strategy, it seems best to allow giving ektveni (evening out a game we are winning) at the
beginning, but if we at any point lose the advantage, we olidwaaking extra komi (balancing a game we are
losing) from then on.

Using this kind of situational compensation has an intérgstonsequence. Normally, the program’s evaluation
of the position can be determined by the winrate percentagessenting the program'’s estimate of how likely the
color to play is to win the game. However, here the value isagfnkept roughly fixed and instead, the program
gives a bound on the likely score margin in the given situatiothe applied extra kont

5.2 Komi Adjustment

There is a question of how often to adjust the komi: we careeitletermine the dynamic komi for the whole next
move based on information gathered throughout the wholeqare move(offline komi) or we divide the tree
search for a single move into fixed-size time sliéemd re-adjust dynamic komi in each slice based on feedback
from the previous slicéonline komi) all slices work on the same tree, so no simulations are assigi lost.

We have found the latter to be a significantly better apprpatibwing to quickly fine-tune the komi to an
“optimal” value during the search. The downside is of cours values obtained with varying komi values are
mixed within a single tree, however we have not found thisttaomful.

Another question is the size of single komi adjustment stepase of value-based dynamic komi: when using
online komi, the finest adjustment amount of 1 point workestfer us. We expect that more complicated
arrangement would have to be in place in case another methosd.

We have discovered that the situational dynamic komi metfaod not stable at the game beginning, especially in
handicap games. We have obtained small improvement by tisngNEARHANDICAP for the firstn moves?®
and only then switching to the situational compensation.

The final question is how to limit the amount of favourable kamposed on the player; surely, with extra 100
komi in favour, the board examination completely loses bowith reality — also, deciding when to resign may
become complicated. We have found that 30 is the top usefukbvar favorable komi; moreover, we stop

allowing negative komi altogether when we re&@dis of the gamé* in order to resign in cases when we cannot
catch up anymore.

6. PERFORMANCE DISCUSSION

We have implemented the methods above within the statetd@TS Go-playing program Pachi. (Bageti al.,
2010) As of October 2010, multi-core instance of the progwaas ranked at the 2k level on the KGS internet Go
server (Schubert, 2010) and reached rating around 2450e08 BOS computer-go server (Dailey, 2010). We
use the RAVE algorithm as described in Section 2.1 with Istiarhode value priors analogous to (Chasioal.,
2010), the simulations use Mogo-like heuristics @nd 3 patterns (Gellyet al,, 2006). In the play tests, we use
a single core, reuse appropriate tree portions but do natgyam the opponent’s move.

1INote that the same tree policy, choosing the best value (&) available at the moment, is of course used.
12\We update dynamic komi every 1000 simulations in our implemeontati

BWe usen = 20 for 19 x 19, n = 4 for 9 x 9.

14Estimation based on board fill ratio.
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Table 1: Dynamic Komi Performance — Even Games

Method Opponent Time per Game  Win Rate
Pachi NoNE GNU Go 3.6min 27.3% + 3.2%
Pachi SORESIT GNU Go 3.6min 26.3% + 2%
Pachi SORESIT Pachi NoNE 3.6min 46% + 2%
Pachi SORESIT | Pachi \ALUESIT 3.6min 43.4% + 1.8%
Pachi \ALUESIT GNU Go 3.6min 29% =+ 2.6%
Pachi \ALUESIT Pachi NoNE 3.6min 54.2% + 3.4%
Pachi \ALUESIT Pachi NoNE 10min 55.6% + 2.2%
Pachi \ALUESIT Pachi NoNE 20min 59.4% + 3.2%
Pachi \ALUESIT Pachi NoNE 30min 58.3% =+ 3.4%

Our tests were performed on theé x 19 board!® We perform play-testing against GNU Go v3.7.12 level 10
(Bumpet al,, 2010¥¢ and self-play testing.

In table 1, we present our measurements of various dynamit keethods in even games. Even though the im-
provement against GNU Go is not statistically significarthie presented table, based on many tests with various
settings throughout the development we believe that tisesgangible small improvement. The improvement in
self-play is much more pronounced and increases with alditiee.

In Figure 2a, we present measurements of dynamic komi efféxetndicap games when taking black and varying
amount of stones. We compare Pachi with no dynamic komi,itieat komi and value-based situational com-
pensation. The thinking time of Pachi is fixed on 3.6 minutasgame — this means very fast time controls, but
allows to gather sufficient sample sizes. GNU Go Level 1 perémce is included for further comparison; Level
1 achieves even better results than Pachi, but it is difftoyjlidge how much the usual self-play effects interfere
with the performance, i.e. if MCTS performance in handicamgs is still as lacking as it might appear here.

In Figure 2b we show measurements of dynamic komi effect imdltap games when taking white and giving
varying amount of stones; the opponent is GNU Go Level 1 antU@¥ Level 10 is a reference. It is apparent
that while linear komi is not effective in this case, valugsed situational komi gives the expected improvement.

The results clearly show that dynamic komi is a significaayplg performance improvement in handicap games.
They also indicate that it can enhance program performameesin games. Value-based situational compensation
fits the bill as a universal dynamic komi method, yielding epiovement for both handicap and even games.
Alternatively, linear handicap compensation may be im@getad very easily in any program to get just the shown
major improvement in handicap game performance agaimsiger players.

7. CONCLUSION

We have shown that balancing tree search using dynamic kambe a viable approach to increase the search
accuracy and thus the program strength. Non-trivial antistitally meaningful win rate increase has been
measured in both handicap and even games, while accountitigef extra time spent on komi calculations. The
proposed algorithms are easy to implement and offer margblerparameters.

We have not researched other approaches to reduce noiseakedtine MCTS more score-focused; possible
future research might investigate ways to co-guide thedeaech by expected score difference or estimate and
account for expected win probability variance when chogéire move to play. Better functions might be found
both for decreasing handicap compensation and situat@mmapensation parameter. The fact that it is best to
never expire a ratchet might indicate that the dynamic kdhatation has some hidden structure we have not
been able to discern yet.

15We have done some informal testing that indicates dynamic korfonpeing well on19 x 19 does not deteriorat® x 9 performance.
16GNU Go is a classical program that does not directly maximizewrobability like MCTS. It is a popular benchmark for compuger
programs performance due to its availability and speed, éa@rgh it is by far not as strong as the top programs.
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Figure 2: Dynamic komi in handicap games.

Our findings have a remarkable consequence — it appears f@aiSMrees ardinker resilientto shifts in the
evaluation function; if the evaluation function is adjubte give a more even result in the middle of the search,
the search tree can cope well and the end result is an impente®ven though the values in the tree have not
been obtained consistently.
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