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Big Ideas

• Computer Go work: Big Ideas and Essential Details

• Natural tendency: Use big ideas of others and focus on
essential details

• Essential details: Reach or somewhat surpass current
state-of-art level
Immediate reward

• Big ideas: Large leap in possibilities
1% success rate (optimistic)

• Still, please think of big ideas and work on them!
• They are your new contributions to human understanding
• You will be famous and your program will get very strong :-)



Information Sharing Current Concepts Inspiration for the Future

Big Ideas

• Computer Go work: Big Ideas and Essential Details

• Natural tendency: Use big ideas of others and focus on
essential details

• Essential details: Reach or somewhat surpass current
state-of-art level
Immediate reward

• Big ideas: Large leap in possibilities
1% success rate (optimistic)

• Still, please think of big ideas and work on them!
• They are your new contributions to human understanding
• You will be famous and your program will get very strong :-)



Information Sharing Current Concepts Inspiration for the Future

Information Sharing

• Common ways to improve a Computer Go program:
Go knowledge, opening books, machine learning
improvements, . . .

• Today's big idea: Information sharing

• By default, MCTS spends a lot of CPU resources on a
simulation and then uses only a single number � result of the
simulation!

• By default, MCTS does not share any data between branches
of the tree, even though many areas of the board can be
mostly independent

• Let's �x that!

• Information �ow: From simulations to tree, from tree to
simulations, between tree branches, between simulations
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Framework: Monte Carlo Tree Search

• Probabilistic minimax tree, each tree has expected win
probability µ

• Multi-armed Bandit: exploration vs. exploitation

• Only root at the beginning, and we repeat:
• Descending to the leaf, sons chosen by Multi-armed Bandit
• If we visit a leaf n times, we create son nodes
• In the leaf, we start a Monte Carlo simulation
• The result is propagated back through the path to the root

• The tree grows dynamically based on search direction

• RAVE Multi-armed Bandit: We search moves
that worked well in simulations
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Framework: Pachi Software

• Computer Go player

• Standard MCTS: RAVE algorithm and a set of heuristics

• Modular, fairly small; optimized C, open source

• Play-testing infrastructure �autotest�

• Pattern harvesting infrastructure
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RAVE

• Most strong programs are using it (except Nomitan!)

• Keystone of modern Computer Go, major method
of information sharing; modern programs use it aggressively
(even completely replacing UCT)

• Key questions of information sharing:
What information to share, the scope where we share it,
how to use it?

• What information: �All moves as �rst�

• The scope: Aggregating statistics by �common pre�x�
in the tree

• How to use it: The RAVE formula

β =
simsRAVE

simsRAVE + sims + simsRAVE sims/simsEQUIV

µRAVE = β
winsRAVE
simsRAVE

+ (1− β) wins
sims

πRAVE = argmaxi µ
RAVE
i
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Criticality

• First presented by Rémi Coulom at
UEC 2009

• Some areas are essential for winning
and unsettled!

• We should �somehow detect� and
�somehow use� this to focus the search
better
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Criticality

Point Criticality: Covariance of random
variables �owning an intersection� and
�winning a game�

Cov(Owning ,Winning) = EOwning ·Winning−

−EOwning · EWinning

CCoulom(x) = µwin(x)−(µb(x)µb+µw(x)µw)

CPell.(x) = µb,b(x)µw,w(x) − µw,b(x)µb,w(x)

CPachi(x) = µwin(x)−(2µb(x)µb−µb(x)−µb+1)
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Criticality

• We have a number (C ∈ [−1, 1])
• Scope: Global table or common pre�x like RAVE

• Usage: This makes the real di�erence

• CrazyStone: Progressive widening criterion, pattern feature

• Orego: µCrit = µUCT + 2C (RAVE replacement!)

• Pachi: Proportionally adding RAVE wins or losses

simsCrit = |CPachi(x)| · simsAMAF

winsCrit =

{
CPachi(x) > 0 simsCrit
CPachi(x) < 0 0

simsRAVE = simsAMAF + simsCrit

winsRAVE = winsAMAF + winsCrit
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Last Good Reply

• Let's make the simulations adaptive! (Drake et al.,
Henrik Baier)

• Maintain function LGRn : a1, . . . , an → a∗ that stores whether
a move a∗ preceded by a sequence of other moves

• Usage: If our context matches an entry in LGRn,
play the stored move! n = 2 is common

• Forgetting: We remove a∗ if we lost the simulation

• Very nice thesis of Henrik Baier explores also (bad)
performance of scoping and variations
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Other

• Dynamic komi � add/substract extra virtual komi based on
average result of previous simulations

• Monte Carlo point owner � simpler alternative or complement
to criticality

• Some others that I have probably forgot

• The �rst method for information sharing you implement has by
far the largest impact

• RAVE is the popular �rst choice, but it seems RAVE might not
be so essential!
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Local Trees

• Motivation: Let's combat the horizon e�ect!

• Idea: Aggregate local sequences from various branches of the
Monte Carlo tree

• (LB , LW ) pair of �local trees� storing black-�rst (or white-�rst,
respectively) local sequences

• Sequences are aggregatd from all branches of the main tree

• Sequences are paused when tenuki happens in the main tree

• Ideally, if we e.g. misevaluate some corner in simulations, and
keep pushing out the correct solution from the main tree, we
will still learn the correct solution sequence in the local tree
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Local Trees

• Big problem (as usual): How to use this information?

• Simple approach: Bias main tree search based on local
sequences

• Experience: Di�cult to overcome bias from simulations �owing
in by RAVE

• How to bias the simulations based on local tree information?
Not so clear!

• Forcing: Play out n sequences from local tree (chosen by
UCT) just before a simulation begins

• Negligible improvement (for now?)
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Liberty Maps

• Biasing simulations based on previous experience: Alternatives
to local trees? (together with Kroon and van Niekerk)

• Liberty maps: A way to aggregate information on moves
regarding a group in the same situation

• Liberty map of group G : Zobrist hash of G 's liberties, taking
their liberties into account (rotating the hash)

• ⇒ Liberty map is a hash number (index in hash table)

• Information stored: Track success of tactical heuristics
candidate moves

• Usage: Prefer moves with better success rates � either over
threshold or UCB (sort of local UCT-ish transposition table
arises!)

• Only small improvement (for now?)
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Goal-based Search

• Generalizing liberty maps: tracking success of moves to achieve
goals

• Goal (high-level): Killing or surviving with a given group

• Goal (low-level): Coloring an intersection with a given color
(what about eyes?)

• Fill goal-achieving moves from simulation heuristics and
�touching moves� anywhere in the tree

• Possible optimization: Consider only groups present in the tree
as possible goals

• Opportunities for sharing results of one-time static analysis

• Usage: Heuristic choice preference, maybe also explicitly try to
achieve goals in simulations?
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Conclusion

• Information sharing allows us to mine maximum amount of
information from simulations � best return for CPU time
invested

• Our simulations could learn from past mistakes (or good
choices) and eventually solve even unexpected situations

• Maybe we can approach pro strength by better ways to share
information (but essential details are still essential, I'm sorry)

• Try out your big ideas with Pachi! ;-)

Thanks!
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