
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Petr Baudi²

MCTS with Information Sharing

Department of Theoretical Computer Science

and Mathematical Logic

Supervisor of the master thesis: RNDr. Jan Hric

Study programme: Computer Science

Specialization: Theoretical Computer Science

Prague 2011

I would like to thank my advisor Jan Hric for guidance and many comments on
both my research and this thesis in particular. Jean-loup Gailly not only pointed
out mistakes in this text, but he has been a great help in Pachi development in
all regards; his contributions keep up my motivation to work on Pachi. Robert
�ámal also patiently listened to all my ideas and helped me with some statistical
aspects of criticality. Jonathan Chetwyng has shown Pachi in a di�erent angle
by his work on Go visualization.

Nick Wedd has been patiently and reliably organizing regular Computer Go
events for many years now, o�ering a steady benchmark for progress in the �eld.
Many other people of the Computer Go community have been very helpful over
the years, sharing details about their work, commenting and answering questions:
David Fotland, Shih-Chieh (Aja) Huang, Rémi Coulom, Olivier Teytaud, Hiroshi
Yamashita, Hideki Kato and everyone else on the computer-gomailing list. Code
by �ukasz Lew, Martin Müller and Markus Enzenberger inspired me much when
I started working on my own Go program.

Last but foremost, Pachi is made of two syllabes. Chido has been my greatest
inspiration and without her, this thesis any many other things would not happen;
also, she has drawn the cute Pachi pictures.

Work on this thesis has been in part supported by the GAUK Project 66010 of
Charles University Prague. Computing resources of the Department of Applied
Mathematics, Charles University Prague were used for play-testing and perfor-
mance tuning of Pachi.

Note: This version contains few minor errata compared to the o�cially sub-
mitted thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature

Název práce: MCTS se sdílením informací

Autor: Petr Baudi²

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí diplomové práce: RNDr. Jan Hric

Abstrakt: P°edstavíme na²i výkonnou implementaci algoritmu Monte Carlo stro-
mového vyhledávání (MCTS) pro hraní deskové hry Go: Pachi. Program je za-
loºen na d°íve publikovaných algoritmech i na²ich p·vodních vylep²eních. Násled-
n¥ se zam¥°íme na zlep²ování efektivity prohledávání pomocí sb¥ru informací
týkajících se taktických situací a obecného stavu hry z jednotlivých Monte Carlo
simulací a jejich sdílení v rámci herního stromu. Navrhneme konkrétní metody
takového sdílení � dynamické komi, m¥°ení kriti£nosti tah· a mapy svobod �
a p°edvedeme jejich pozitivní ú£inek na základ¥ nam¥°ené výkonnosti v·£i jiným
program·m. Na záv¥r na£rtneme n¥kolik zajímavých navazujících témat souvise-
jích s na²ím výzkumem.

Klí£ová slova: Herní stromy, Minimax, Monte Carlo stromové vyhledávání, Go

Title: MCTS with Information Sharing

Author: Petr Baudi²

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jan Hric

Abstract: We introduce our competitive implementation of a Monte Carlo Tree
Search (MCTS) algorithm for the board game of Go: Pachi. The software is
based both on previously published methods and our original improvements. We
then focus on improving the tree search performance by collecting information
regarding tactical situations and game status from the Monte Carlo simulations
and sharing it with and within the game tree. We propose speci�c methods of
such sharing � dynamic komi, criticality-based biasing, and liberty maps � and
demonstrate their positive e�ect. based on collected play-testing measurements.
We also outline some promising future research directions related to our work.

Keywords: Game Trees, Minimax, Monte Carlo Tree Search, Go

Contents

Introduction 3

1 Game of Go 5
1.1 Rules . 5
1.2 Rulesets . 6
1.3 Basic Gameplay . 7
1.4 Computer Go . 9

2 Monte Carlo Tree Search 10
2.1 Monte Carlo in Go . 10
2.2 Multi-armed Bandit Problem . 10
2.3 Bandit-based Game Tree Search and Upper Con�dence Tree . . . 12

2.3.1 Simulation Policy . 13
2.3.2 Prior Values . 14
2.3.3 Rapid Action Value Estimation (RAVE) 15

2.4 Information Sharing . 16
2.4.1 Situational Information Sharing 16
2.4.2 Horizon E�ect . 17
2.4.3 Local Value . 19

3 The Pachi Software 20
3.1 The Pachi Framework . 20

3.1.1 Software Development . 20
3.1.2 General Architecture . 21
3.1.3 Program Interface . 22
3.1.4 Board Data Structure . 23

3.2 Play Testing . 25
3.2.1 Testing Infrastructure �Autotest� 26

3.3 Tree Search Policy . 27
3.3.1 Opening Book . 28
3.3.2 Prior Values . 28
3.3.3 Time Control . 30
3.3.4 Parallelization . 31

3.4 Simulation (Playout) Policy . 33
3.4.1 The Self-atari Problem . 34

3.5 Performance . 34

4 Dynamic Komi 38
4.1 The Extreme Situation Problem 38

4.1.1 Handicap Games . 38
4.2 The Dynamic Komi Technique . 39

4.2.1 Prior Work . 40
4.3 Linearly Decreasing Handicap Compensation 40
4.4 Situational Compensation . 41

4.4.1 Situation Measure . 42

1

4.4.2 Komi Adjustment . 43
4.5 Performance Discussion . 44

5 Criticality-based Biasing 46
5.1 Criticality Measure . 46
5.2 Using Criticality . 47
5.3 Performance Discussion . 48

6 Liberty Maps 49
6.1 Collecting Ratings . 49
6.2 Using Ratings . 50
6.3 Performance Discussion . 50

7 Future Directions 52
7.1 Information Sharing . 52

7.1.1 Dynamic Score-value Scaling 52
7.1.2 Local Trees . 52
7.1.3 Tactical Solvers . 53

7.2 Other Research . 53

Conclusion 54

Bibliography 55

List of Figures 55

List of Tables 56

List of Abbreviations 57

A Pachi Source Code 58

B Sample Pachi Session 60

2

Introduction

Go is an ancient Asian board game popular for its simple rules that nevertheless
produce extremely complex gameplay. It has been studied for many centuries and
vast amount of research on strategy and tactics involved has been done by both
historical and contemporary professional players of the game, but it also inspired
mathematicians and computer scientists. For example, one of motivations of the
Combinatorial Game Theory has been the exact study of Go [BW94], and the
game became well known among researchers interested in computer game-playing
since it turned out to be much more di�cult to write a strong Go program than
for example a strong Chess program. Some consider beating the top human Go
players one of the grand challenges of Arti�cial Intelligence.

Traditional game tree search techniques used in Chess do not work very well in
Go. They achieve strength of an intermediate player (5-kyu) but are easy to beat
by advanced players. The reasons are much speculated about; it is commonly
accepted that the branching factor in Go is much higher than in Chess [All94],
while pruning moves is tricky and writing a reliable evaluation function is not easy
as stone groups can have varying tactical status and human strategy is guided by
abstract, intuition-based principles. Also, reuse of previous evaluations is di�cult
since simple transposition tables cause only a minor reduction of the search space.

However, the �eld of Computer Go has experienced a quick dash forward
after the seminal paper [KS06]. It turned out that the Monte Carlo Tree Search
(MCTS) algorithm works extremely well for Go, and after much further work,
top programs are now di�cult to beat even for professional players on the small
9 × 9 board, and can compete with advanced players (4 dan) on normal board
sizes. Most current research in the �eld focuses on improvements of the MCTS
techniques.

However, much work still remains to be done, and there are signi�cant hurdles
preventing further strength growth on large boards. While MCTS usually makes
good strategy decisions, its tactical evaluation can degrade rapidly if the situation
does not align well with implemented heuristics, and its strategy may cease to
be e�ective in case of situations with large advantage or disadvantage (e.g. in
handicap games; Sec. 4.1.1).

In this work, we present the architecture and algorithms of our Go-playing
program Pachi. It features a state-of-art implementation of MCTS for Go and
consistently ranks among the top programs in competitions; we believe it is cur-
rently the strongest open source Go program and only a few proprietary programs
can outperform it. We detail the variation of mainstream algorithms we use and
reason our implementation choices based on collected performance measurements.

Furthermore, we shall outline an approach to solving some of the current issues
in Computer Go. The common underlying theme is information sharing: we have
observed that many problems stem from the lack of coordinated exploration in
independent branches of the game tree in the standard MCTS algorithms. There
are no established ways of adjusting the search for overly adverse or bene�cial
situations, and no method for representing and using tactical �ndings that do not
directly align with the in-simulation heuristics.

3

The gist of this thesis is an amalgam of three papers that are currently going
through the peer review process or being prepared for publication: Balancing
MCTS by Dynamically Adjusting Komi Value,1 Pachi: State of Art
Open-Source Go Program,2 and Some Information Sharing Methods in
Go MCTS.3 We have further rearranged, revised and extended the contents of
the papers with the goal of presenting a full and coherent picture of the currently
used algorithms and our improvements.

In the �rst chapter, we present the game of Go and the �eld of Computer
Go. The second chapter follows up with the overview of MCTS in general and
its application in Go; we also present the information sharing problem in more
detail. The rest of the thesis describes our original work: we present our program
Pachi and its speci�c variant of MCTS in the third chapter, and all our proposed
methods of information sharing in the fourth to sixth chapter. In the seventh
chapter, we consider some related research ideas.

The attached CD contains the thesis PDF, Pachi source code, Pachi executable
compiled for Debian Wheezy x86_64 Git repository with the development history
and shown game records in the SGF format.

1Submitted to the ICGA Journal in March 2011, currently a revision is waiting for peer
review.

2Most likely will be submitted for the 2011 Advances in Computer Games conference.
3In preparation.

4

1. Game of Go

Go has its roots at least in the 6th century B.C. of ancient China [Fai08] and is
commonly recognized as the oldest board game in existence. In the �rst millenium
A.D. it has spread to Japan and Korea by cultural exchange, and became an
important part of the East Asian culture. By the beginning of the 20th century it
was most popular in Japan where the strongest players also lived and it has spread
from there to the Western world; most Go terms used are still based on Japanese
words. However, in the second half of the 20th century, Go regained popularity
in China (where it is known as Weiqi) and especially Korea (its Korean name is
Baduk) and by the beginning of the 21th century, it is fairly well known in the
Western world as well. While Go is commonly played in clubs and tournaments,
play on dedicated internet servers (e.g. KGS [Sch]) also became very popular and
represents a useful testing venue for computer Go programs.

While Go is a game with simple rules, the array of strategical possibilities
and tactical techniques are vast and mastering them requires many years of study.
Therefore, it is important to measure the skill level (�strength�) of players. Begin-
ner and intermediate players are assigned so-called �kyu� ranks decreasing from
30-kyu for beginner1 to 1-kyu for a fairly skilled player. Advanced players receive
master �dan� ranks increasing from 1-dan to 9-dan2 and professional players also
use �dan� ranks, but on a di�erent scale.3 The rank di�erence of two players
may be used to determine the amount of handicap stones so that they play a
roughly even game (see Sec. 4.1.1). Nowadays, ranks are determined from Elo
ratings [Cie+]. Various regional Go associations and internet servers use their
own ranking systems that work as described above but are slightly di�erently
calibrated.4

1.1 Rules

Go is a two-person, zero-sum game with full information. It is played on a square
grid of a given size � board ; 19 × 19 is the most popular, but e.g. 9 × 9 and
13 × 13 are also common. Each intersection of the grid is a point. Two players
alternate in making moves consisting of placing a stone of their color on a point
of their choice. Black and white colors are used, black makes the �rst move.

Stones of the same color that are adjacent and directly connected by grid lines
form a group5 and they share liberties � unoccupied points adjacent to a group.
When a group runs out of all liberties, it is captured � the stones are physically
removed from the board (and therefore, points are turned from occupied back to
empty). For example, in Fig. 1.1 the stone A can be captured by black playing

1In some systems 20-kyu is the weakest rank while other start at 50-kyu. The ranking is not
very acccurate for the least skilled players.

2Again, some systems have a cap at 7-dan while others have no top limit at all.
3Weakest professional players may be around the level of amateur 7-dan.
4Therefore, European 3-kyu might possibly be 1-kyu on KGS and 1-dan in United States.

[Sen]
5We use the term �group� as this is the terminology used in Pachi sources and among most

Go players. However, some of the scienti�c literature uses the term �chain� to emphasize that
only solid connections are considered here.

5

A B C D E F G H J

1

2

3

4

5

6

7

8

9

A

B

C

D

E F

G

Figure 1.1: Example �gure showing various Go situations.

B, stone C can be captured by D and E together with the triangled stones may be
captured by white F. It is prohibited to play a stone that would have no liberties
(unless it captures a neighboring group).

The goal of the game is to achieve higher score than the opponent, i.e. number
of points occupied or completely surrounded by stones of the player (plus komi,
several points given to white as a compensation for black playing �rst). The game
ends when both players play a pass move (giving up their right to place a stone),
usually when the score cannot change anymore.6

The capture rule would enable game loops. For example, consider the situation
around C and D in Fig. 1.1: if one player captures the opponent's stone, the
opponent could capture back the player's capturing stone right away, and so
on. To prevent this, the ko rule prohibits immediately playing at the point of a
single-stone capture; �rst, at least one other move must be made. The ko rule
is triggered fairly often and it is tactically important. Frequently, capture or
survival of a group might hinge on the result of a �ko �ght�: after one player
captures, the other will play a move elsewhere such that the capturing player will
face a dilemma � �ll in the ko point or reply to the last move (ignoring it will
usually mean some loss to the player). This way, ko �ghts may connect otherwise
unrelated parts of the board.

1.2 Rulesets

There are multiple formulations of the rules. Rulesets take di�erent approaches
to the scoring phase, dealing with repeated situations (the superko rule) and other
minor points, but the gameplay, tactics and strategy involved is almost the same.

6Sometimes, the players pass before all stones of the opponent that could be captured are
removed from the board, if both players agree the owner cannot save them anymore. Formally,
passing rules are usually more complicated to facilitate this agreement, but in casual games
just two pass moves are used.

6

A B C D E F G H J

1

2

3

4

5

6

7

8

9

A B

C

D E

Figure 1.2: Life and death of groups.

Various rulesets strike di�erent balance between precision, practicality and
tradition. The rules we have described above closely match the mathematical-
ly precise Tromp-Taylor rules [TT]. By disallowing �suicide moves� (removing
the last liberty of one's group), we essentially gain the Chinese rules that are
most commonly used by MCTS-based programs. Japanese rules are usually used
among western players and they take a very di�erent approach to scoring (�terri-
tory scoring� vs the �area scoring� of Chinese rules), but it can be shown that in
most situations, the score di�erence between the two methods would be at most
one point.

1.3 Basic Gameplay

We shall mention few basic implications of the rules to better understand the
general gameplay and roles of various heuristics and establish some vocabulary.

We use the term �tactics� for techniques directly involving survival or capture
of groups. The most crucial is the tactical concept of �eyes�: a single point
completely enclosed by stones of same color.7 8 Eyes have direct relation to the
status of the group. A group will eventually get surrounded by opponent stones,
its liberties reduced. If it surrounds no empty points or has only a single eye, all
its liberties will eventually be removed and the group is doomed to be captured
� we call it dead. However, if the group manages to enclose two eyes, it becomes
alive and its liberties cannot ever be reduced below two9 as the opponent cannot
�ll both eyes at once.

7In colloquial usage, an eye can also describe an area of multiple points that cannot be
reduced to multiple eyes.

8When we use phrases like �cannot be reduced,� usually we assume �given competent play
by both sides.�

9Finding a way to reduce a small territory to a single eye or split it in two eyes may be very
hard problem, but it is crucial to strong play. Exercises that require solving this problem are
called �life and death� or �tsumego�.

7

Fig. 1.2 shows examples of some basic life and death situations. The black
group around A has the last liberty in its eye A; if white plays a stone at A, the
move will capture all black stones. The black group around B has two liberties,
but white can still capture it. If white plays a stone at B, it will be in atari and
black can capture it, but by playing the capturing move the black group will be
also down to a single liberty and white can play at B again. However, the group
around C is unsettled. If white plays at the spot, the situation may be further
reduced in turn to B and then to A and white will eventually capture. However,
if black plays at C, the group will gain two eyes (like D and E) and white cannot
capture the black group anymore.

As the game proceeds, stones begin to enclose territories; a group encloses
territory if it is large enough (or properly structured) so that the surrounded
area cannot be reduced to a single eye, and small enough that the opponent
cannot start playing within the territory and be able to form a two-eyes group.
It is important to realize that capturing opponent's stones has at least twice
the score value of the territory underneath the stones: normally, each played
stone intrinsically gains the player a single point of score, but if a stone has been
captured, the capturing player gains the point underneath the stone while the
captured player loses the point coming from presence of her stone on the board.

The whole game therefore revolves around two goals to be balanced: �ghting
the enemy groups to capture them and enclosing enough territory. In the game
opening (�fuseki�), players stake out their general areas of in�uence and potential
territories; usually, they start in corners (which are already enclosed from two
sides) and then divide the sides.10 The middle game then follows � frequently,
one of the players stakes out a territory claim so large that the opponent must
play a move among the strategically placed opponent stones and try to convert it
to a living group. The game may evolve to a series of complex �ghts with many
groups being split, connected and struggling for survival. Eventually, the status
of all groups is settled and the endgame (�yose�) wraps the game up as the players
negotiate precise boundaries of territories.

A group that has but one liberty is called to be in atari. Putting one's group
in �self-atari� is usually a bad move since the opponent may capture the group
in the next move, but it is sometimes necessary: e.g. when preventing formation
of two eyes within a group territory (the �nakade� technique). distinguishing
between good and bad self-atari moves is a fairly complex problem (Sec. 3.4.1),
but solving it may be important for program's performance.

Sometimes, two neighboring groups may become involved in a capturing race
(�semeai�) � both are surrounded by groups of opponent color and neither can
enclose two eyes. Each player thus tries to capture the opponent's group �rst by
reducing its liberties as fast as possible. Sometimes, this �ght reaches a stalemate
seki where the two groups share their last two liberties and therefore one cannot
reduce the opponent's group liberties without putting itself in atari.

After describing the basic concepts, we shall mention at least two most basic
actual tactical techniques. One may catch a group with only two liberties in a
net (�geta�) by playing nearby so that if it attempts to escape at any point, the
player may catch it in atari that cannot be broken. For example, in Fig. 1.1 the

10Tactical exchanges may happen in the opening, usually following �joseki� sequences com-
monly agreed to lead to an equal result for both players.

8

group G cannot escape anymore.
On the other hand, catching a group in ladder means that even if the group

in atari attempts to escape by �pulling out� at its last liberty, the opponent can
continue putting it in atari from alternating sides until the group reaches the
board edge or a supporting stone of the opponent and cannot escape anymore �
if the group instead reaches a stone of its own color, the ladder would not work
and the group would be saved.11 Ladders are interesting in two regards � they
can tactically connect two distant areas of the board, e.g. opposing corners if the
middle of the board is yet unoccupied, and they are easily read even by beginner
players while traditional game-search techniques are quickly daunted by length
of the (principially straightforward) sequences. In Fig. 1.1 the group E cannot
escape anymore � if black tried to play at F, white may put the group in atari
again.

We have just scratched the surface of all the possible tactics and strategies
stemming from hundreds of years of intense Go research. Interested readers may
�nd a wealth of information e.g. on the Sensei's Library community wiki [HP+]
where they will also �nd explanations for any other Go terms we might use.

1.4 Computer Go

We shall give only a very brief overview of the techniques used in Computer Go
in the past before diving into the Monte Carlo Tree Search in detail. Surveys like
[BC01] provide good overview of the pre-Monte Carlo approaches.

Early Go programs [Zob70b] were based around an in�uence function de-
scribing e�ect of stones on potential territory. Pattern-based play [Boo90] and
attempts to mimic human understanding of the game by division to zones [RW79].
Standard techniques such as α, β-search, specialized submodules for concrete
tasks and rule-based expert systems had limited success; the e�orts in �classi-
cal go techniques� culminated with GNUGo [BFB+] and non-MCTS version of
Many Faces of Go [Fotb], both ranked around 5-kyu on the KGS Go server.
Popular alternative approaches like neuron networks [Enz96] were not successful.

However, some subproblems of Go were tackled successfully. The Combina-
torial Game Theory has been applied to very late Go endgame and solvers based
on CGT analysis are able to beat top professional players [BW94]. Also, solvers
of isolated tsumego (life and death) problems based on α, β-search are now ca-
pable of solving even problems that are considered of professional-level di�culty
[Wol07].

11Amistake of trying to escape a working ladder or trying to catch a group with a non-working
ladder usually results in a dramatically disadvantageous position.

9

2. Monte Carlo Tree Search

Monte Carlo methods invoke the law of big numbers by performing large amounts
of randomized �simulations�, each giving a semi-random reply to the original ques-
tion. We then assume that the most likely answer gained the largest percentage of
replies, assuming that the results are unbiased and follow an appropriate random
distribution. We use the randomized simulations to evaluate Go positions and
e�ciently build a game tree based on the randomized simulations.

2.1 Monte Carlo in Go

The �rst experiments regarding Monte Carlo approach in Computer Go date
to 1993 [Bru93], but further research [BH03] did not have large impact. The
approach consisted of examining a situation and using Monte Carlo simulations
to do single-level sampling of possible next moves.

Various techniques, e.g. progressive pruning strategies or the all-moves-as-�rst
heuristic (see Sec. 2.3.3), were important inspiration for their MCTS equivalents.
However, single-level Monte Carlo search never overcame its fundamental limita-
tion of being unable to discover move replies in arbitrary depth. Therefore, while
it was surprisingly good at �nding strategically interesting moves that set up a
large attack or enclose good chunk of territory, it su�ered problems in tactical
situations � a moves was rated high if the random simulation was not likely to
play the appropriate reply, and vice versa.

2.2 Multi-armed Bandit Problem

The archetypal problem of iterated decisions in stochastic environment is the
Multi-armed Bandit Problem. A �one-armed bandit� is term often used for a
simple slot machine; the player inserts a coin and according to a �xed but un-
known probability distribution, the bandit may give a reward. The �multi-armed
bandit� then corresponds to a slot machine with multiple arms, each with an
independent stationary probability distribution. The player's objective is then to
repeatedly choose arms in such a way to maximize the total reward.1

The exploration-exploitation dilemma then concerns the fact that the player
must follow two goals � go for the highest reward choosing the best arm according
to her knowledge and improve the estimate of rewards for all arms. At the
beginning, the player has to resort to random tries and only as the rewards start
to come in, she gets the picture of which arms are most pro�table; however, there
is always a possibility of statistical error, thus exploration is always necessary for
an optimal player.

More formally, [LR85], [KS06] and [GW06] de�ne the K-armed bandit as a
sequence of random rewards Xit ∈ [0, 1], i = 1, . . . , K, t ∈ N, where each arm has
an index i and t denotes successive plays of the arm. A bandit policy π is then a
function that selects the next arm to be played based on previous rewards.

1As far as we know, the problem was, albeit named di�erently, �rst proposed in [Rob52].

10

The accepted measure of a policy is its �regret� � how much reward we miss
because of not always choosing the optimal arm (i.e. either we explore too much
and do not choose the best arm often enough, or we explore insu�ciently and have
a wrong idea of the best arm). Let µi denote (originally unknown) expectation
of arm i, µ∗ the expectation of the optimal arm, Ti(n) the number of times arm
i has been played after the �rst n plays:

µi = E

 1

Ti(n)

Ti(n)∑
t=1

Xit


µ∗ = max

i
µi

Rn = nµ∗ −
K∑
i=1

E [Ti(n)]µi

It was proven early [LR85] that the lower asymptotic bound2 for the regret Rn

is Ω(lnn). In other words, the optimal arm is chosen exponentially more often
(asymptotically) than any other arm. Multiple policies have been proposed; a
popular one is the �ε-greedy policy,� choosing the arm with the highest estimated
expectation with probability 1 − ε and a di�erent random arm with probability
ε.

Another class of policies are such that in each step, we compute an �up-
per con�dence index� for each arm and pick the arm with the highest index.
The Upper Con�dence Bound (UCB) policy3 [ABF02] implicitly negotiates the
exploration-exploitation dilemma by adding a relative measure of uncertainty to
the estimated expectation; therefore, even low-expectation arms are occassionally
explored when the uncertainty is too high compared to other arms:

πUCB1(n) = argmaxi

(
µi + c

√
2 lnn

Ti(n)

)
Discovery of this policy has proven to be an important result since the policy

follows the logarithmic bound not just asymptotically but also uniformly, and
it is much more versatile in the face of unknown distributions than the ε-greedy
strategy.When used in a particular domain, the parameter c of UCB can be tuned
for the optimal exploration-explotation ratio.

Eventually, a quite di�erent policy has gained prevalence in Computer Go: the
RAVE policy, instead of giving an universal upper bound, takes full advantage of
the tree and simulation structure of MCTS and estimates the upper con�dence
index based on previous performance of the arm in related bandits. We describe
the details below.

2This is assuming a general probability distribution of the arms.
3We describe the UCB1 policy introduced in [ABF02]. The paper also describes UCB2 and

UCB1-TUNED algorithms and the authors of Mogo found it works well in their case [GW06].
However, in all our experiments, UCB1 performed much better as the tree policy of UCT
described below.

11

2.3 Bandit-based Game Tree Search and Upper

Con�dence Tree

Let us now bring together the concepts introduced in this chapter so far. We
have discussed the Monte Carlo approach, but it has not been successful due to
its lack of support for sequence evaluation. But with the multi-armed bandit
policies, we have gained an excellent tool to integrate the Monte Carlo approach
with a minimax tree that will dispatch the simulations e�ciently.

Let us examine the general Monte Carlo Tree Search algorithm:

Algorithm 1 MCTS

Require: s is a certain whole-board situation.
Require: node(s) is a tree node corresponding to the given situation.
Require: πT (s) is the new situation after tree policy decision at a given situation.
Require: πS(s) is the new situation after simulation policy decision at a given
situation.
while time is available do
s← RootSituation
while node(s) is not leaf do
s← πT (s)

end while
n← node(s)
MaybeExpandNode(n)
while s is not �nal position do
s← πS(s)

end while
r ← Evaluate(s)
while n exists do

UpdateNode(n, r)
n← parent(n)

end while
end while
Play(argmaxn∈child(RootSituation)sims(n))

The Monte Carlo tree search consists of repeated episodes, where each episode
descends the tree from the root to a leaf, takes a single sample based on Monte
Carlo simulation at the leaf position, then updates the node values with the
sampled data.4 Initially, the tree consists only of the root node, and more nodes
are added when their parents are visited.5 Eventually, the root child with the
highest number of simulations is chosen.6

4Of course the game tree is minimax. Therefore, either the expectations are for the to-play
player in each tree layer, or the πT policy minimizes the expectation in the opponent-to-play
layers.

5The concrete expansion strategy may vary between programs. In Pachi, after visiting a
node n times, children for all possible followup nodes are added.

6It might seem natural to choose the node with the highest expectation, but these values
may �uctuate; MCTS compensates for the uncertainity and the number of simulations is thus
a much more robust estimate.

12

Note that the values used to update the expectations are generally just either
1 for a win or 0 for a loss; score-based values were used initially, but it was quickly
discovered that using a sharper division is much more robust [GW06] since Go
games are usually fairly close and we want to avoid preferring moves that have
just a small chance of large score swing � after all, a win is a win, no matter by
how many points.7

Let's now join the UCB multi-armed bandit policy and the general MCTS al-
gorithm � the speci�c algorithm is called UCT (Upper Con�dence Tree) [KS06]
and this combination has made the �rst signi�cant headways in the �eld of Com-
puter Go [GW06].8 Let's give a simpler context-speci�c formula for expectation9

µi of node i; it is simply the average outcome of simulations10 going through node
i:

µi =
wins(i)

sims(i)

The MCTS algorithm has several remarkable properties. It is an online algo-
rithm that can be stopped anytime and the con�dence in the current result will
be proportional to time spent. The tree is highly memory e�cient since it grows
asymmetricaly based on the prevailing direction of the search. It also requires
no extra domain knowledge per se � MCTS works even when πS is uniformly
random policy. In that case, it is only required to recognize and score the �nal
position, i.e. just the most straightforward rules implementation is su�cient.

2.3.1 Simulation Policy

After we descend the tree to a leaf node, the simulation phase begins with the
purpose of getting a Monte Carlo evaluation of the board position corresponding
to the leaf node. The simulation policy πS picks move after move until the �nal
position is reached. Since MCTS engines usually use Tromp-Taylor or Chinese
rules (see Sec. 1.2) for simulations, all the territory may be �lled with stones and
playing within the opponent's territory is not harmful.11 Therefore, a common
termination condition is to stop playing moves when no more moves are available,
combined with a rule that prohibits �lling own one-point eyes.12 13

Of course, in practice πS is packed with a rich mix of (mostly domain-speci�c)
heuristics. In fact, perhaps most of the day-to-day program improvements and

7Pachi does allocate a small portion of the propagated value to rescaled score information
(we call this value scaling), but the e�ect of this improvement is small.

8One must be however very careful when trying to apply results of multi-armed bandit
research to MCTS. Some of the general assumptions may not hold, for example the arm prob-
ability distributions are not stationary as the tree gets expanded.

9In case of MCTS, we also use the term winrate synonymously.
10In case of Go, we also use the term playouts synonymously.
11At least when all dame has been played or both players are equally likely to do it.
12Filling one's own eye is reasonable only in exceptional circumstances; usually, it will only

prevent life of one's group. Furthermore, without this prohibition, in the �nal position all groups
would eventually have only a single liberty, the opponent would capture them and playing would
resume in the freed up space.

13To avoid disturbing seki positions, some other non-eye points should be left empty. Simple
MCTS implementations usually ignore this issue. Pachi addresses it by prohibiting self-atari
moves in playouts with high probability (Sec. 3.4.1).

13

tuning is spent by tweaking the simulation policy. The policy often involves
spatial patterns, tactical suggestions (the simplest being protecting or performing
capture), handling of ko �ghts or protection against tactically unsound (e.g. self-
atari) moves. We will explain Pachi's playout policy in detail in Section 3.4.

An important issue is how to combine all the heuristic suggestions. Two
general models are usual in MCTS programs:

• Rule-based policy (based on the program Mogo [Gel+06]). The heuristics
are applied in a �xed order, the suggestion of the �rst matching heuristic
is chosen (or a uniformly random move if no heuristic triggers).

• Probability distribution policy (introduced in the program CrazyStone
[Cou07]). On each move, all available moves (or their large subset) are
assigned an expectation as a product of evaluations by individual heuris-
tics matching the particular move and surrounding spatial patterns. The
expectation then corresponds to relative probability of choosing the move.

The probability distribution policy is a prominent feature of the currently
strongest programs. However, while we have spent a lot of e�ort on implementing
this policy in Pachi, we have not been successful so far, therefore we still use the
rule-based policy, which is also much simpler and faster.

Tuning the simulation policy is di�cult and still considered largely a �dark
art�. It is not a matter of merely increasing its strength as a stand-alone player,
or of its predictive power. Often the overall program strength is reduced when
improving the domain-speci�c knowledge; the MCTS may converge slightly faster
in general, but the heuristics always handle speci�c cases wrong and the possible
resulting MCTS biases are a serious problem resulting in the horizon e�ect (Sec.
2.4.2).

We must also mention a recently proposed methodology to tackle this prob-
lem when automatically learning heuristic weights. �Simulation balancing� [ST09]
[HCL10] is based on the idea that instead of minimizing the error of each in-
dividual prediction, the combined error of both players' predictions should be
minimized: if a heuristic consistently favors one player in some situations, it will
lead to undesirable bias, but if it makes errors fairly for both players, the biases
will compensate.14

2.3.2 Prior Values

When we described leaf expansion, we have not speci�ed one important thing
� how are the newly created nodes initialized, or how are the nodes initially
selected.

In the original algorithm, it was prescribed that each newly created node
is tried once to seed the expectation. However, this involves a large overhead
since typically, only few of the moves are likely to succeed. �First play urgency�
represents a minor improvement of this method; unexplored moves are assigned a
constant UCB value such that if moves explored so far are yielding good results,
they will be explored further before other moves are tried.

14We are not performing any automatic simulation policy learning in Pachi yet, but we value
the general idea.

14

However, an important part (see Table 3.2) of a modern MCTS-based algo-
rithm is a more sophisticated way to choose moves to be explored when no actual
statistics have been collected yet. A set of heuristic functions is applied to newly
created nodes to perform some static evaluation; e.g. moves near to the last move
are preferred to encourage local tactical search, solitary moves at the board edge
are discouraged since they have little in�uence on the game and preference is giv-
en to nodes agreeing with the domain-speci�c playout policy rules. Two distinct
approaches for applying the heuristics in practice are popular [Cha+07]:

• Progressive widening (unpruning) [Cou07] applies a ranking function
to each newly created move. Then, given n visits to the node so far, only
the �rst f(n) children (ordered by the ranking function) are considered.15

• Progressive bias [GS07] adjusts the expectation of nodes instead; virtu-
al simulations are considered together with the real simulations, with the
amount and results of the virtual simulations based on the applied heuris-
tics. The strategy is also progressive since the �xed number of virtual
simulations has decreasing e�ect as the nodes are explored.

There are successful programs using either strategy, though we feel progressive
bias is more widespread. In Pachi at least, we have found progressive bias more
e�ective. We will talk in detail about the heuristics we use in Sec. 3.3.2.

2.3.3 Rapid Action Value Estimation (RAVE)

We shall �nally describe the �rst mean of information sharing, �rst proposed by
[GS07] and representing a major leap in the MCTS strength. In plain MCTS,
the only data gathered from a simulation is its ultimate outcome, and it is used
only for update of expectations along the path from tree leaf to the root node.
RAVE both extends the amount of data gathered in simulations and distributes
it among a larger set of nodes.

Aside of the regular expectations based on immediate simulation outcomes, we
shall also introduce AMAF (all-moves-as-�rst) expectations. The AMAF heuristic
[BH03] was introduced even before MCTS; normally, we consider only results of
random games where we played the examined move in the current situation, while
all-moves-as-�rst suggests to consider results of random games where we played
the examined move anytime (after the current situation).

The RAVE algorithm is two-fold. First, it describes the propagation of AMAF
expectations based on �common game pre�x�. AMAF expectation of move m in
situation s is made based on outcomes of all simulations visiting situation s
and playing m anytime later in the game.16 Therefore, when propagating the
simulation result, AMAF expectations of all siblings along the path are updated.

Second, the RAVE formula provides a way to combine regular and AMAF
expectations. Let simsRAV E be the number of AMAF samples at the node and
winsRAV E the number of sampled AMAF wins:

15f(n) is a monotonically increasing function (e.g. log n).
16This includes moves made in the Monte Carlo simulations. This much increases the im-

portance of simulation quality as any biases within the simulations will re�ect in the AMAF
statistics.

15

β =
simsRAV E

simsRAV E + sims+ simsRAV Esims/simsEQUIV

µRAV E = β
winsRAV E

simsRAV E

+ (1− β)
wins

sims

πRAV E = argmaxi µ
RAV E
i

Note the lack of exploration term. Some programs combine RAVE with the
UCB-style exploration term (usually using a fairly small c multiplier), but we
have found we obtain the best behavior by guiding the exploration purely by
the (very noisy, after all) AMAF statistics. The β parameter17 is designed to
give higher precedence to AMAF expectation when the number of simulations
has been much smaller than simsEQUIV while regular expectation takes over
as the number of simulations goes up. For absolutely unexplored nodes, regular
expectation also takes precedence as it is seeded with the prior value simulations
while AMAF has gathered no simulations yet.

RAVE enables much quicker convergence to good moves and sequences as it
picks up promising moves from simulations even if the prior heuristics do not
suggest them or have too weak e�ect. However, it is more sensitive to simulation
biases � if the simulation will never choose a good move at the right time, it will
never gain the required amount of positive AMAF samples.

2.4 Information Sharing

After introducing all the basic concepts of Monte Carlo Tree Search, we now have
a chance to discuss the main theme of this thesis: information sharing.

The game tree search considers each branch separately, and the only knowl-
edge gained and stored is whether the speci�c branch leads to a positive or neg-
ative conclusion. There are three obvious approaches for improving the search:
pruning branches, improving accuracy of the evaluation, and extending the set of
data collected and used during the search.

A prominent example of the latter and the emblem of successful information
sharing is RAVE. It speeds up identi�cation of crucial moves by sharing statistical
information with sibling branches. In this thesis, we tackle two general problems
using information sharing methods.

2.4.1 Situational Information Sharing

Some of the game search parameters would bene�t from assessing the general
board situation, as recognized based on statistics collected over all performed
situations: if most simulations reply the same result (i.e. the situation is ex-
tremely advantageous or disadvantageous), the resolution of the results would be
improved if the score threshold is adjusted (dynamic komi, Ch. 4).

17Derived to minimize the mean square error of the sum when assuming binomially distributed
expectations.

16

2.4.2 Horizon E�ect

Even more prominent problem concerns local positions. On large boards, the
situation can be loosely decomposed to many local positions, each concerning
a set of groups that interact together and an optimal sequence to resolve this
interaction. Of course, the positions are usually not entirely independent �
any positions can in�uence each other in ko �ghts, and nearby positions often
interact simply by changing status of involved groups. A rule of thumb is that
if one position is resolved aggressively by one of the players, it is usually at the
expense of safety of some of her groups, and the player therefore has to play more
defensively in other positions involving this group to secure the required eyespace
or escape routes.

Nevertheless, there are still many positions that may be considered almost
isolated � usually corner and side situations with inner group of one player
entirely surrounded by outer alive groups of the opponent (tsumego) or two groups
involved in a capture race (semeai). The status of the inner group then depends
on its eyespace and even though it may not be very large, the sequences to kill
or secure life of the group may be fairly complex and even advanced human
players may have trouble �nding solutions easily. There exist dedicated solvers
for these positions based on α, β-search (as noted in Sec. 1.4) but MCTS in itself
is surprisingly weak at solving them:

• The correct solution is usually an exact sequence and any deviation can be
catastrophic for the player. Therefore, the tree may not gradually converge
to the solution.

• If a move is made elsewhere on the board, the exact sequence must be re-
read repeatedly in each tree branch that does not touch the actual position.

• The simulation policy behaves in a certain manner in the position. Either
the heuristics used in the policy resolve the local situation correctly18 or the
results are to some degree biased against the correct solution.

The third aspect is especially daunting when RAVE is used, since the tree
exploration completely relies on the implication of good move by positive AMAF
statistics. If the simulations produce biased results, they also feed the tree wrong
AMAF information and the proper move may never be searched. But even if it is
discovered in the tree, it is never fully read out; for the side that is disadvantaged
in the proper solution, the in-tree result for the proper move is worse than in-tree
result for an unrelated move that leads to a branch that resolves the position
in the incorrectly behaving simulation. Therefore, the minimax game tree has
a tendency to avoid the situation and push it out to the simulations. This is
commonly called the �horizon e�ect�.

When a MCTS-based program loses a game, in our experience it is mostly
due to a misbehaving heuristic and ensuing horizon e�ect; a losing position is
evaluated incorrectly in the tree, therefore the program avoids playing in the
vicinity, but based on data from the simulations it behaves like the position
would be unclear or favorable. Eventually, such positions tend to accumulate

18One could even argue that almost all the heuristics used in simulations have this purpose.

17

A B C D E F G H J K L M N O P Q R S T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A

B

Figure 2.1: Example horizon e�ect position (black Pachi30s vs. white
botkiller2, Jun 9 2011, KGS). In simulations, white is likely to play at the
triangled position and therefore reducing the A group to a single eye. Therefore,
the program incorrectly believes the group is e�ectively dead with high proba-
bility. The game tree would in time �nd that B for white is much superior to
the triangled move, but that will only cause the minimax tree to switch from the
previous black move to a di�erent one until the game tree again discovers that B
is better than the triangled move. Then it switches again and so on.

18

on the board, and either the opponent eventually makes clarifying moves, or the
game proceeds to an almost-�nal position when there are no alternative moves in
the tree anymore.

The usual solution is to add and improve heuristics used in the simulations.
While this is certainly worthwhile to a degree, it quickly evolves to �ghting a time-
consuming losing battle. The heuristics soon need to be more speci�c, covering
an increasingly narrower set of situations, and the simulations are bogged down
by multitudes of checks. Therefore, we focused our research on the investigation
of generic ways that would allow us to (i) identify critical moves that need extra
attention, (ii) share resolutions of local positions between tree branches and (iii)
dynamically adjust local position resolutions in simulations.

One previously proposed way to �nd critical positions has been the �criticality�
function measuring covariance of owning a given point and winning the game; we
have found a good way to use it during the search directly (Ch. 5). Also, we have
developed a way to share information on e�ectivity of various heuristical moves
at ensuring survival of a group (liberty maps, Ch. 6)

2.4.3 Local Value

We need a general way to assess move e�ectivity in a local position � its local
value. Let (coord, color) be the move and fcolorc be a color19 of the point c in
the �nal game position. A simple local value measure we have devised is (usually
averaged over many simulations):

nei(c) = {left(c), right(c), up(c), down(c)}

lvalue(color, coord) =
1

3
· [fcolorcoord = color] +

∑
c∈nei(coord)

1

6
· [fcolorc = color]

In other words, we assume that the move is locally successful if the stone turns
out to be still alive at the game end, and furthermore as many of its neighbors as
possible turn out to be owned by the player. The latter is important especially
for �outside moves� a�ecting a semeai � it gives precedence to moves that lead
to the capture of the opponent group.

19We also declare the intersection to be of some color if the intersection is an eye of a group.

19

3. The Pachi Software

We have implemented a general framework for Go playing program and a Monte
Carlo Tree Search engine on top of this framework. In this chapter, we will
detail the architecture of our software and re-state the Computer Go problem
and MCTS algorithm from the point of view of our speci�c implementation.

3.1 The Pachi Framework

Figure 3.1: O�-
cial Pachi artwork by
Radka Hane£ková.

The design goals of Pachi have been simplicity, minimum
necessary level of abstraction, clarity of programming in-
terfaces and focus on maximum playing strength. This
has various consequences quickly apparent to new Pachi
developers and users.

At the time we started our work on Pachi,1 several
programs with open source code already existed � most
notably, GNU Go [BFB+], Fuego [Enz+10], libego [Lew]
and Orego [Dra+]. We have borrowed useful ideas (main-
ly various implementation tricks) from most, but still we
have chosen to develop a new program. This has been
in part since we were simply unaware about some of these
back in 2007, but also because we were uncomfortable with
some design choices we have seen and we desired to learn
the most about Computer Go by starting from scratch.

To put Pachi in contrast with these: Fuego is mainly a generic framework
that provides a generic library for the game of Go and a generic library for game
tree search; the go-playing engine emerges as a combination of these two libraries
with several heuristics included. However, for our taste the Fuego architecture
has too many layers and is therefore overly complex and di�cult to extend for
inexperienced users. GNU Go is a classical game search engine that has been
largely abandoned and while it boasts a great wealth of heuristics, patterns and
tactical modules, adapting it to MCTS appeared to be a formidable task. We
weren't aware of libego and Orego at �rst, moreover while libego is tiny and very
e�cient, it was not ready for implementation of more detailed heuristics at that
moment, and we weren't excited about Orego's choice of Java.

3.1.1 Software Development

Pachi is licenced under the GNU General Public Licence (version 2) [Fre91],
making it a free and open source software. New versions are released regularly;2

the last release at this time is 8.00 from May 22, 2011. Current snapshot can be
retrieved at any time from the public Git repository where further development
is done.3 Some codebase statistics may be found in Appendix A.

1Pachi is named after the clicking sound stone makes when placed on a board.
2The latest version is always available for download at the Pachi homepage http://pachi.

or.cz/.
3The Git repository is accessible at http://repo.or.cz/w/pachi.git.

20

http://pachi.or.cz/
http://pachi.or.cz/
http://repo.or.cz/w/pachi.git

Figure 3.2: Block schema of the Pachi architecture. When multiple options of
the same class are available, the default module used is highlighted.

Petr Baudi² has remained the principal developer and author of most of the
architecture and the code. Jean-loup Gailly has been important contributor, im-
proving tree memory management, co-authoring the �exible time management
strategy and most importantly implementing highly scalable distributed compu-
tation support. Few minor patches came from other authors.

Pachi is written in pure C. Most of the code is richly commented and follows
a clean coding style. Header �les provide clearly de�ned interface for each build
unit. Most Pachi modules are fully encapsulated and reentrant, using structures
to maintain object instances and function pointers to provide a class-like interface
in a manner similar e.g. to the Linux kernel.

3.1.2 General Architecture

Pachi is built with a complete focus on the game of Go, but otherwise features a
modular architecture (Fig. 3.2). The common Pachi core provides common basic
facilities, while the choice of next move is o�oaded to a game engine that usually
performs some kind of search. An auxiliary library provides optional supporting
features for the game engine while the Go board module provides basic Go rules
implementation and the tactical library o�ers more advanced Go heuristics. The
playout modules provide the Monte Carlo simulation functionality (we assume
multiple game engines might want to share the same playout modules).

The primary function of Pachi core is to provide an engine-agnostic foundation
and the elementary shared code (with focus on the needs of Monte Carlo based
engines). Its responsibilities are proper initialization, the main game loop and
the GTP interface. It also provides common debugging facilities, fast random
number generator (simplistic Park-Miller [PM88] implementation) and the time
management strategy implementation (Sec. 3.3.3).

21

There are four main4 game engines implementing various move selection strate-
gies. The random engine simply plays randomly and it is meant as an example
engine. The Monte Carlo engine performs single-level Monte Carlo search akin
to [Bru93]; it is not maintained much anymore. The UCT engine �nally con-
tains a state-of-art implementation of MCTS for Go (the name is misleading by
now, as the tree search uses pure RAVE instead of classic UCT). The distributed
�meta-engine� is a work of Jean-loup Gailly and takes care of distributing and
collecting work from multiple Pachi instances in a computation cluster; currently,
only support for UCT engine instances is implemented.

The tree policy used within the UCT engine is also modular. While UCB1 im-
plements the classic formula (Sec. 2.2), UCB1AMAF incorporates management
of the AMAF (and other) statistics and uses the RAVE formula (Sec. 2.3.3; the
name is again a historical relic as the optimum for the UCB-speci�c exploration
term constant is c = 0). Other parts of the engine (game tree, prior values,
dynamic komi, . . .) are also kept in separate modules with well-de�ned interface.

The Go board module maintains the core data structure of Pachi representing
the current board situation (Sec. 3.1.4), provides related accessors and iterators
and implements the Go rules (playing stones and counting score). De�nitions of
stone colors and the coordinate system are kept in small separate �les.

The tactical library implements heuristics and checks related to tactics and
strategy above the basic Go rules. Most notably, single-level tactical search for n-
liberty groups, a sophisticated self-atari detector (Sec. 3.4.1) and a ladder testing
tool.

The auxiliary library provides some extra data structures useful for game
engines and playout modules � move queues, win/loss statistics, board point
ownership statistics, 3 × 3 board pattern matcher, and probability distribution
chooser.

The playout module task is to choose the next move in a Monte Carlo sim-
ulation; a secondary task is to provide hints for move prior values assigned by a
game engine. Right now, two modules are used: the random module picks moves
in a uniformly random manner, while the moggy module implements a rule-based
policy making full use of all the available tactical heuristics (Sec. 3.4).

3.1.3 Program Interface

Pachi does not have a built-in user interface. It focuses just on the task of playing
the game and for comfortable playing experience, a separate frontend program
should be used.

All settings are speci�ed on the command line. Command line options starting
with a dash are processed by the Pachi core and specify universal settings like time
constraints and debugging level. A possible other parameter is passed to the game
engine and is expected to form a set of comma-separated attribute=value pairs.
For example, the UCT engine accepts settings like number of threads, maximum
tree size, exactly how AMAF statistics are collected, etc. Some of the attributes
enable or choose further modules to use (e.g. tree and playout policy, dynamic

4The engine facility is also used internally and for debugging. The replay engine will simply
o�oad the move selection to a playout module while the joseki engine is used for building the
joseki dictionary.

22

komi, liberty maps, . . .) and provide means to pass on further comma-separated
con�guration options (constants to use in the RAVE equation, probabilities of the
stochastic playout rules, shape of the dynamic komi curve, and so on). Nearly all
aspects of Pachi behavior are tunable by these options.

The main game-related communication of Pachi happens using the Go Text
Protocol (GTP) [Far]. This is an �industry standard� used by nearly all Computer
Go programs, enabling use of a variety of frontends, easy connection to internet
servers and also automated computer�computer matches. The protocol is text-
based and in principle can be also used directly; with the default debugging level,
Pachi will print updated board diagram each time a move is made. Appendix B
shows a sample Pachi session.

Furthermore, various supplementary simple scripts are included. The sgf2gtp
script is crucial for program testing and debugging as it converts a SGF game
record [Hol] as available for example from the KGS archive of played games to a
stream of GTP commands. This can be also used for computer-aided analysis of
previously played games. By cutting the GTP stream at an appropriate moment
and appending a genmove command, the user may obtain the program's opinion
on the situation. Similarly, the script sgf-analyse will plot a graph of Pachi's
view of the game balance (in terms of best move winrate) after each move when
given a game record. Instead of the genmove command, a custom command
uct_evaluate may be used to in turn evaluate and rate each possible move in a
situation.

In cooperation with Jonathan Chetwyng, we are developing5 a new JSON
standard for progressive reporting of current view of the game during ongoing
move search. The periodical reports include a list of best moves and the �best
move sequence�, but also per-point information on territory owner and group
survival (based on average color of each point in the �nal playout positions). The
main intended application is smooth visualization using a web-based frontend
(Sec. 7.2).

3.1.4 Board Data Structure

The foremost focus of most authors of new MCTS software is on raw number
of simulations per second. Usually, �light� simulations are implemented and op-
timized for at �rst. Few or no heuristics are applied and the focus dwells on
minimal implementation of the Go rules and uniformly random choice of moves.
We have walked the same path at �rst.

However, the true strength improvements come from an elaborate mix of
heuristics, and with RAVE (see below) they must be applied mainly within the
simulations. At that point, the balance changes � while speed of move-playing
routines is still important (about 20% of run time is spent there), it is not critical
to increase it at any cost; instead, enough information must be maintained so
that heuristics may be computed e�ciently, especially with regard to liberties.
For example, with the advent of MCTS, the method of pseudo-liberties6 [Hou],

5The implementation is not merged in the master branch yet.
6Instead of the number of unoccupied points neighboring the group, pseudo-liberties repre-

sent the number of edges from the group to unoccupied neighboring points. This still allows
to determine whether the group is captured and the count is much more e�cient to maintain.

23

allowing Go rules to be implemented without maintaining explicit list of liberties,
was popular � however, when implementing self-atari heuristics or semeai checks,
having a list of real liberties is crucial and it does not make sense to optimize it
away anymore.

Our data structure contains several (n + 1) × (n + 1) arrays; the arrays in-
clude a �border� of special color, allowing point neighbor iterators to skip explicit
boundary checks. We maintain the following information for each intersection:

• Color of the intersection: none, black, white, board border.

• Group identi�er for the current intersection. If no stone is at the intersec-
tion, this is zero. Group identi�er is simply a position of the move that has
founded the group.

• Position of the next stone in the group. Allows e�ortless iteration over all
stones in a group.

• Counts of immediate neighbors of each color.

• Zobrist hash (Sec. 6.1) for the given intersection.

• 3× 3 pattern code for the given intersection.

• �Traits� � cached simple tactical information (e.g. �it is safe to play here�
or �number of neighbors we can capture�).7

Furthermore, we maintain the following general data structures:

• Per group information containing details on liberties. We do not maintain
the list of all liberties, but use a �xed-size list of at most m = 10 liberties;
the list is re�lled if it becomes shorter than m/2 = 5 and the group has
more liberties. This allows rich heuristics based on low-liberty tactical sit-
uations and fast atari/capture handling without too much list maintenance
overhead for large unencumbered groups.8

• Queue of capturable groups.

• Queue of free intersections. This allows fast and unbiased random move
selection.

• List of the k last moves and superko hash table.

Pachi's implementation of the Go board supports a symmetry folding reduc-
tion in the game beginning as moves may be isomorphic by rotation or �ipping.
In the initial position, all moves are isomorphic to moves in a triangle marking
just 1/8 of the board. If a Go engine can reduce the set of moves based on this
symmetry information, move search in the opening is much more e�cient.

However, it is not possible to easily distinguish atari situations or get a list of all liberties
without duplicates.

7This functionality is currently turned o� as it is not worth the extra performance hit with
the current set of used heuristics. We plan to enable it again in the future.

8We were inspired by GNUGo in our liberty handling.

24

Pachi's board implementation follows the Chinese rules, except that it does not
prohibit multi-stone suicide9 10 for performance reasons. Game engines usually
allow suicide in playouts and prohibit it just in the game tree. The UCT engine
also supports an approximate emulation of the Japanese rules.

3.2 Play Testing

Two complementary approaches are used when testing Go programs. The stan-
dard way of unit testing is supported in Pachi, although the set of tested features
is very small and Pachi needs to be improved in this regard. But aside of that,
it is important to watch and tune the overall playing strength of the program by
�play testing� and observing its performance against other players, computer or
real-world. Programs usually regularly play over the internet, either with humans
or other programs. They may acquire a rating or rank that can serve as a crude
measure of general strength.

But another common way of play testing is by choosing a reference oppo-
nent (or set of reference opponents)11 and testing several variants of the program
against the opponent by automatically playing hundreds or thousands of games.
Observing and comparing their winning rates is then the usual way of quanti-
fying new improvements and tuning the constants (stochastic rule probabilities,
equation coe�cients, etc.).

We use this kind of play testing extensively and developed a custom tool for
this task as described below. It is the most reliable way of assessing improvements
and the results shown in the rest of this work have been obtained this way.
Unfortunately, the win rate di�erences gained by individual improvements tend
to be fairly small in practice and therefore obtaining statistically meaningful
results can be extremely demanding.12

Our testing methodology evolved over time. First, we focused on testing on 9×
9 boards since the games are much shorter; however, there is much less demand for
e�cient information sharing methods on smaller boards and the general strategy
and game-play is not that similar to large boards. On 19×19 boards, we originally
tested with 220 seconds per game (no overtime, single thread); however, the tree
search has very little time to grow the tree in this scenario, which means that
changes quickly improving initial convergence will be overrated while changes that
a�ect long-term search behavior will get underrated � and we have experienced
that e�ect of many changes strongly depends on time per move. Lately, we have

9Originally, it was intended to follow the Tromp-Taylor rules, but these are not used widely
for actual play and di�er in their superko handling.

10Real-world rulesets may de�ne complex protocols for ending the game and agreeing on
stones that are dead or alive. Pachi, and probably no other computer program either, does not
support these rules since in practice they are rarely used even in serious tournament settings.

11Another common practice is �self-playing�, i.e. testing the improved version against an
older version of the same program. We usually avoid this since we have observed the results to
be frequently overampli�ed or otherwise distorted.

12Often, several thousands of games are necessary to distinguish performance of two variants
with acceptable (95%) con�dence. If we assume a single game takes 10 minutes on average, we
can play 144 games per day; on 8-thread machine, we could play 1152 games per day. With
a handful of candidate versions, this means a latency of several days even when using several
computers in parallel and non-stop. And still, on average 1 in 20 measurements will be o�.

25

moved to testing with 500 seconds per game (no overtime, single thread) as the
current compromise between computing power available and getting results at
least just in the order of days.13 Overall, we gradually adopt testing settings that
are slower but mirror real-world playing conditions more closely.

We are aware that these measurements still may not perfectly re�ect behav-
ior with longer thinking times and many-threaded search, unfortunately we just
have to rely on this approximation for now, also noting that almost all other
publications related to Computer Go show measurements obtained under similar
conditions. This is also the reason why not all measurements presented here use
the same time settings or base Pachi version � it is simply not practical to repeat
all earlier measurements due to the extreme time and computational demands.

We usually perform play-testing against GNUGo v3.7.12 level 10 [BFB+].
GNUGo is a classical program that does not directly maximize winning proba-
bility like MCTS, therefore games against it can be more diverse and similar to
games against humans. It is a popular benchmark for Computer Go programs
performance due to its availability and speed, even though it is by far not as
strong as the top programs. Level 1 is the weakest practical setting while level
10 is the strongest di�culty setting before testing becomes too slow.

3.2.1 Testing Infrastructure �Autotest�

Pachi features a unique and �exible infrastructure for play-testing, autotest.
The infrastructure is based on several non-trivial POSIX shell scripts that take
advantage of concurrent execution and shared �lesystem, not requiring any other
means of synchronization or a central dispatching service.

The user can declare players (as program invocations) and pairings to bench-
mark; independently, she starts as many autotest client instances as desired. In
each iteration, the client reloads the con�guration �le, picks a random pairing,
uses the twogtp tool14 to play out the match and records the result (also archiv-
ing the game played). Each client has a unique identi�er it uses as directory name
for storing results and games.

When the user wants to explore di�erent pairings or new player version, up-
dating the con�guration �le is enough and the clients will pick up the new pairings
as soon as their current matches are �nished. To get current results, a dedicated
script inspects directories of all clients and produces summarized results.

In our setup, we share the autotest working directory over NFS to the work-
stations and computing servers of a university department; when the machines
are idle (at most nights and on weekends), the autotest clients are spawned on
the machines (the number of instances per machine corresponds to the number
of cores). One of the pairings is always a �reference� (previous version of the
program) and performance of other pairings is compared against this pairing to
account for any winrate changes due to di�erent combinations of hardware on the
particular machines where clients run at the time, etc.

13Thanks to Jean-loup Gailly, the default Pachi settings were tuned to behave well with
realistic number of simulations too.

14TwoGtp is a tool that runs two programms and connects their GTP streams so that they
play a game together. Multiple implementations exist, we use the version distributed with
GoGui [Enz].

26

Table 3.1: Performance with Various Exploration Coe�cients against GNU Go
level 10, 500s/game, 19× 19 with no komi and GNUGo black

UCB coe�cient Win Rate

c = 0.2 22.5%± 2.5

c = 0.05 49.4%± 1.9

c = 0 57.2%± 1.9

The highlights of autotest include trivial con�guration, simplicity of setup
and high degree of automation. Much work remains to be done, though: imple-
mentation of some automated tuning algorithm, more elaborate automated client
spawning and performance improvements.

3.3 Tree Search Policy

We use the RAVE tree policy basically as described in Sec. 2.3.3, using simsEQUIV =
2500 (found by parameter tuning). The simsRAV E and winsRAV E terms include
the criticality value as detailed in Sec. 5.2. The sims and wins terms include
the prior values (Sec. 3.3.2) for progressive bias:

sims = simsPrior + simsReg

wins = winsReg ·
simsReg

sims
+ winsPrior ·

simsPrior

sims

Our choice of abandoning the UCB exploration term altogether is not unique,
but not too common either. Table 3.1 shows the rationale for this choice. We
speculate that this is allowed by our quite rich set of heuristics that can guide
exploration alone by the RAVE term. However, this also currently limits our
further strength growth as explained in Sec. 2.4.2.

We expand leaf nodes when they have been visited n = 8 times. For simplicity,
propagated and stored values are always from black's perspective; in case of black
win, value around 1 is propagated, while in case of white win, value around 0 is
propagated. However, by value scaling,15 small portion of the value Scale = 0.04
is reserved for linearly rescaled representation of score di�erence up to Range =
40, designed to nudge the tree to prefer branches achieving wins by largest amount
possible:

Algorithm 2 WinValue

Require: Score is the �nal territory di�erence; negative in case of black loss.
Require: Result is {0, 1}; zero in case of black loss.

ScaledScore← Scale ·max{min{ Score
Range

, 1},−1}
WinValue← Result · (1− 2 · Scale) + Scale + ScaledScore

15Originally introduced in Fuego [Enz+10].

27

We represent the tree explicitly using node structures linked with pointers:
to the parent, the �rst child and the next sibling in a linked list of children.16

Each node structure contains separate statistics for regular winrate, prior winrate,
AMAF winrate and ownership data (for criticality). The statistics are maintained
as (value, sims) pairs (where value = wins/sims). The safe lock-free value
update scheme is inspired by Fuego [EM10].

When a move is played and the opponent replies, the appropriate sub-tree of
the original tree is reused. We also support �pondering� � running a search on
the background while waiting for the opponent's move. If the upper tree memory
limit is hit, the search is stopped; we currently do not support pruning the tree
during search and it is crucial that search does not continue when nodes are not
expanded anymore � it soon starts exhibiting the same issues as the single-level
Monte Carlo search (Sec. 2.1).

3.3.1 Opening Book

Building a large and e�ective opening book has not been Pachi's focus so far
since we do not optimize much for the 9 × 9 board and we have not regarded
opening book as particularly important on 19 × 19 before. We are planning to
revisit this topic in the near future. Nevertheless, Pachi supports two opening
book approaches:

• Forced book is stored in a Fuego-compatible format and contains, for each
board size, a set of positions (de�ned by sequence of moves) and a single
follow up move for each position. If a position included in the book is
reached, the move is played unconditionally. No such book is included with
Pachi by default, but the book distributed with Fuego may be used as-is.17

• Tree book is basically a serialized form of the game tree to use within the
UCT engine in the game beginning. This approach is more �exible; there is
some space for stochastic behavior and larger set of candidate moves may
be considered in each position. The tree book �le may be generated by
previous Pachi search, so it is possible to use this simply as a cache of the
search results for the initial position. However, the script included with
Pachi to generate this book is very crude and it is very easy to get out of
the book if opponent replies were not completely expected by Pachi.

Our usage of opening books has not been particularly e�ective yet. However,
Pachi has the requisite facilities to use a book and now only a way to build a
good opening book needs to be devised and implemented.

3.3.2 Prior Values

After n = 8 visits to a leaf tree node, the node is expanded and nodes for all
possible followup moves are created. In order to kick-start exploration within
the node meaningfully using progressive bias (Sec. 2.3.2), the winrate value for

16We are aware that our approach is somewhat ine�cient here; all siblings could reside in a
single array, and ideally transposition tables would be used instead of coordinate sequences.

17The book/book.dat in Fuego source tree.

28

Table 3.2: Performance of Various Prior Value Heuristics vs. GNU Go level 10,
500s/game, 19× 19 with no komi and GNUGo black

Heuristic Win Rate

Full combination 58.5%± 2.2%

w/o 19× 19 lines 56.3%± 2.4%

w/o CFG distance 49.1%± 2.3%

w/o eye malus 54.1%± 2.3%

w/o ko prior 56.4%± 2.3%

w/o playout policy 26.8%± 2.8%

each new node is seeded based on various heuristics. In general, each heuristics
contributes given number of virtual simulations18 (�equivalent experience�) all
with the same result (win or loss). The sum of the heuristic contributions is
represented by the winsPrior and simsPrior variables above. Performance of the
heuristics is shown in Table 3.2. Most heuristics we use are inspired by the original
paper on Mogo [Cha+10].

• First, we apply the �even game� heuristic; unlike other heuristics, it does
not add a win or loss, but the value of 0.5. The heuristic is important
to stabilize reading when RAVE is used; if turned o�, RAVE tends to get
overly biased by initial results and other prior values, unwilling to explore
nodes outside of local maxima.19

• Next, we apply the �eye� heuristic, adding lost games to all moves that play
within single-point true eyes of own groups. Such moves are generally use-
less and not worth considering at all; the only exception is the completion
of the �bulky �ve� shape by �lling corner eye, this situation is rare but pos-
sible, so we only discourage the move using prior values instead of pruning
it completely.

• We attempt to encourage proper handling of ko �ghts (see Sec. 1.1) by
encouraging exploration (adding wins) of a move that re-takes a ko no more
than 10 moves old.

• We try to encourage sane 19 × 19 play in the opening by giving a malus
to �rst-line moves and bonus to third-line moves if no stones are in the
vicinity.

• We encourage exploring local sequences by providing won simulations bonus
to moves that are topologically close to the last move; we use a metric based

18Small boards require less virtual simulations than large boards; for most heuristics, we use
14 simulations for 9 × 9 and 20 simulations for 19 × 19. Some heuristics are contributing half
or twice this amount.

19We did not even include this heuristic in the performance table since the RAVE tree search
simply does not work without it at all.

29

on the shortest path inCommon Fate Graph.20 This has two motivations
� �rst, with multiple interesting sequences available on the board, it is
required to ensure the tree does not swap between situations randomly but
instead reads each sequence properly; this is of most importance on large
boards. Second, it is well rooted in the traditional Go strategy where large
portion of moves is indeed �sente�, requiring a local reply. We provide bonus
decaying with the distance, up to a distance of 3.

Additionally, we match board quadrants within a joseki dictionary and give
additional priors according to suggestions by the playout policy (see Sec. 3.4).
There is also some support for node prior evaluations based on external plugins,
but this has not been used in practice yet.

3.3.3 Time Control

The tree search can be limited either by a �xed number of playouts, by �xed time
per move, or by speci�c amount of time for the whole game (possibly further split
to overtime periods etc.). In close cooperation with Jean-loup Gailly, we have
developed a �exible thinking time allocation strategy for the latter case with the
goal of spending the most time in the most critical parts of the game � in the
middle game (see Sec. 1.3) and particularly in situations where the best move is
unclear.

The main idea of the strategy is that it assigns two time limits for the next
move � the desired time td andmaximum time tm. Normally, only td time is spent
during the search (minus a �xed amount designated to compensate for network
lag and tree management overhead), but this time may be extended up to tm in
case the results provided by the tree are too unclear (and this triggers very often
in practice).

Given the main time T and estimated number of remaining moves in the
game21 R, the default allocation is td = T/R and tm = 2td; this allocation is
recomputed on each move so that we account for time overspending. Furthermore,
we tweak this allocation based on the number of moves since game beginning so
that we spend most time per move in the middle game.

For overtime (byoyomi), we use our generalized overtime speci�cation: after
the main time elapses, �xed-length overtime To for each nextmmoves is allocated,
with n overtime periods available. I.e., a chunk ofm moves must be played within
the given time limit; otherwise, the period counter is decreased and when it hits
zero, the game is forfeit on time exceeding. Japanese byoyomi is a speci�c case
with m = 1 while Canadian byoyomi can be expressed with n = 1 �xed.

If overtime is used, the main time is still allocated as usual, except that
tm = 3td and the main time td is at least the byoyomi td. In overtime, the �rst
n− 1 overtime periods are spent as if they were part of the main time, then the

20Moves near liberties of the same group, though possibly far apart on the board, should
be considered nearby. We consider a graph corresponding to the Go board grid with edges
between stones of the same color (i.e. within a single group) having weight 0 and the rest of
edges weighted at 1. Common Fate Graphs were introduced in [Gra+01].

21We base this on an expectation that on average, 25% of board points will remain unoccupied
in the �nal position. We always assume at least 30 more moves will be required.

30

 28

 30

 32

 34

 36

 38

 40

 0 0.02 0.04 0.06 0.08 0.1

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

0
[%

]

bestr

(a) Best � best child delta bestr

 32

 34

 36

 38

 40

 42

 44

 46

 1 1.5 2 2.5 3 3.5

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

0
[%

]
best2 (bestr=0.02)

(b) Best � second best ratio best2

Figure 3.3: Performance of various time setting parameters.

time per move is allocated as td = To/m and tm = 1.1 · td. Of course, tm is
upper-bounded by the remaining period length.

The tree search continues even after td time already elapsed if the current
state of the tree is suspicious � the expectations of the two best children are too
similar (best2 ratio), the expectations of the best children and its best followup are
too di�erent (bestr di�erence), or the root child chosen based on most simulations
is not the move with the highest expectation. As mentioned above, the concrete
thresholds are tuned so that these conditions trigger except in the most clear-cut
situations. On the other hand, the search is terminated earlier than td if the best
move cannot change anymore without regard to results of all future simulations22

or the chosen move expectation is over a given threshold and a su�cient number
of simulations has been performed to con�rm that.

Fig. 3.3 shows that using �exible time strategy may result in a signi�cant
performance increase compared to simply allocating �xed number of simulations
or time slice per move. Overall, performance of Pachi with 300s per move would
be 32.2% ± 1.1% with no prolonged reading conditions vs. 44.1% ± 1.4% with
optimal settings.

3.3.4 Parallelization

Historically, various parallelization approaches for MCTS have been explored.
Root parallelization and leaf parallelization are the simplest approaches
[CWH08]. Root parallelization runs an independent search on a separate tree in

22This check is suppressed in overtime with m = 1 and n = 1; we gain nothing by stopping
earlier and we may reuse parts of the tree in the next move.

31

 0

 20

 40

 60

 80

 100

15.6/1 31.3/2 62.5/4 125/8 250/16 500/16 1000/16 2000/16 4000/16 8000/16

w
in

 ra
te

 v
s.

 F
ue

go
 1

.1

kplayouts/threads

Figure 3.4: Performance of parallelization and various time settings vs. Fuego 1.1,
550kplayouts in 16 threads, 19× 19 with komi −22.5 (Fuego as black).

each thread; when the search stops, the trees are merged and a winner is chosen
from the �nal tree, i.e. the threads e�ectively give a weighted vote on the winner.
On the contrary, leaf parallelization uses only a single thread for the search and
then executes multiple simulations in parallel.

Root parallelization is not giving very good results since no information ex-
change usually happens and all parallel searches are likely to proceed in the same
general direction; for leaf parallelization, tree search is the bottleneck and it
turns out that playing multiple games at once of course provides a more accurate
sample, but in fact does not improve MCTS e�ectivity too much.

The third obvious approach is in-tree parallelization, with multiple threads
performing both searches and simulations in parallel on a shared tree. Further-
more, [CWH08] introduced the concept of virtual loss � to spread the parallel
tree descents, a virtual lost simulation is added to each node visited during the
descent and removed again in the update phase. Moreover, [Enz+10] has shown
that no locking of the tree is needed and small inaccuracies resulting from non-
transactional sequence of atomic operations are tolerable.

Lockless in-tree parallelization is the approach used in Pachi. Fig. 3.423

demonstrates both the e�ectivity of parallelization and also scaling when number
of simulations is simply doubled.

Cluster parallelization of Go is still not clearly solved. Pachi has elaborate
support for distributed computations with much information exchange between
the nodes thanks to the work of Jean-loup Gailly, but even so it scales much
slower when multiplying number of nodes than in the case of processors with
single low-latency shared tree.

23Data courtesy of Jean-loup Gailly.

32

Table 3.3: Performance of Various Playout Heuristics vs. GNU Go level 10,
500s/game, 19× 19 with no komi and GNUGo black

Heuristic Win Rate

Full combination 59.5%± 2.3%

w/o Capture 5.4%± 2.1%

w/o 2-lib. 47.2%± 2.4%

w/o 3× pats. 18.5%± 1.7%

w/o self-atari 54.7%± 2.3%

3.4 Simulation (Playout) Policy

As already mentioned, Pachi uses a rule-based simulation policy originally in-
spired by the Mogo algorithm [Gel+06]. Heuristics are tried in a �xed order, each
is applied with certain probability (in most cases, the probability is around 0.8 for
large boards, 0.9 for small boards). A heuristic returns set of suggested moves;
if the set is non-empty, a random move from the set is picked and played. If the
set is empty (the common case), next heuristic is tried. If no heuristic matches,
a uniformly random move is chosen. See Table 3.3 for performance impact of the
major heuristics.

First, with p = 0.2, ko is re-captured if the opponent played a ko in the last
4 moves.

Then, local checks are performed � heuristics applied around the last move
(sometimes also the second-to-last). They are restricted in this way partially for
performance reasons, but it has been also shown [Gel+06] that a preference for
playing local continuous sequences of moves is important for good performance:

• Nakade is a common technique of killing a group � a move is played inside
the eyeshape to prevent the opponent from splitting it into two eyes. With
p = 0.2, we check if the liberties of the last move group form the appropriate
shape.

• If the last move has put its own group in atari, we capture it; if it has
put a group of ours in atari, we attempt to escape (or counter-capture a
neighboring group in atari). We are careful not to continue escaping a
ladder that works against us.

• If the last move has reduced its own group to just two liberties, we put it in
atari, trying to prefer atari with low probability of escape. If the opponent
has reduced our group to two liberties, we attempt to either escape or put
some neighboring opponent group in atari (thus attempting to handle the
simplest forms of semeai).

• With p = 0.2, we attempt to do a simpli�ed version of above for groups of
three and four liberties.

• Points neighboring the last two moves are matched for 3 × 3 board pat-
terns centered at these points. The patterns represent various common

33

shapes like �hane�, cut and �magari�. They are similar to patterns present-
ed in [Gel+06], though few patterns have been replaced and information on
�in atari� status of stones is also used.

Additionally, we match board quadrants within a joseki dictionary built from
the Kogo Joseki Dictionary [Odo+] (we use the branches marked as �good varia-
tions�).

Suggestions of the simulation policy are also used to assign prior values to new
tree nodes. The same set of heuristics as listed above is used, but all heuristics are
always applied (though some contribute reduced or increased number of virtual
simulations) and local checks are performed globally. It may be of special note
that we dynamically adjust the number of won virtual simulations for group
captures based on the group size:

sims · max{min{stones, 15}, 2}
2

3.4.1 The Self-atari Problem

Bad self-atari moves are pruned from heuristic choices and stochastically also
from the �nal random move suggestions: in the latter case, if the other liberty of
a group that is being put in self-atari is safe to play, it is chosen instead, helping
to resolve some tactical situations involving shortage of liberties and false eyes.

The bad self-atari detection is quite complex process � not just because
the move must not be actually played on the board yet but also since pruning
legitimate self-atari moves will lead to many missed essential tactical moves. For
example, when capturing a group with single large eye, it is required to �ll the eye
with own stones, eventually putting the inner group in atari; sometimes, stones
need to be �thrown in� group connections along the edge to prevent formation
of eyes, etc. On the other hand, the self-atari detector will also detect some
dangerous moves extending three-liberty groups.

3.5 Performance

We have shown the performance e�ect of various aspects of Pachi in the text
above, but we should also put the overall performance of Pachi in context of
other Computer Go software.

The primary venue where Pachi plays open games with the members of public
is the KGS internet Go server [Sch]. Petr Baudi² maintains a Pachi instance
running with 8 threads on Intel i7 920 with hyperthreading enabled and 6 GiB of
RAM available24 that plays as users Pachi, PachIV and PachIW. These instances
can hold a solid 1-dan rank25 as shown in Fig. 3.5.26

24Until few months ago, only 4 GiB of RAM were available.
25The rank is computed automatically using a server-wide rating algorithm. Only handicap

games up to six stones in either direction are allowed. The rank is based only on performance
on the 19× 19 board. On the 9× 9 board, Pachi distributed over just a few machines has been
tested to be of high dan strength [Bau10].

26This user has been used for playing only intermittently, therefore strength has been in fact
increasing more linearly than apparent from here.

34

Figure 3.5: User PachIW

Figure 3.6: User Pachi2

35

Jean-loup Gailly runs KGS Pachi instances Pachi2 and Pachi30s based on
the distributed game engine. They use a cluster of 32 or 64 machines, each
running 20 or 22 threads. Pachi2 (the higher rated of the two, using faster time
settings) is ranked as 3-dan (Fig. 3.6).

Pachi (usually the distributed version) regularly participates in the monthly
KGS tournaments [Wed05]. It is able to occassionally defeat even the top Com-
puter Go program Zen and usually �nishes on the second or third place. It tied
with Many Faces of Go for the �rst place in the First 2011 Slow KGS Computer
Go Tournament.

Measurements show that with both programs running 16-threaded on the
same hardware con�guration and with equal time settings, Pachi has 50% win
chance against the next best open source MCTS program Fuego when giving
it komi equivalent to 3.6 handicap stones. The main testing opponent we use,
GNU Go on level 10, can be overcame with 50% time when Pachi plays with 500
seconds for the whole game (GNU Go with �xed level will not adjust its thinking
time by the amount of time available) and the probability rises rapidly with
more time available. On the other hand, some closed source programs are still
stronger than Pachi: Many Faces is one rank higher than the single-machine Pachi
on KGS, while single-machine Erica is about as strong as Pachi using a cluster
and instances of the CrazyStone and Zen programs are even stronger. Overall,
distributed Pachi is perhaps the fourth strongest program regularly playing on
KGS while single-machine Pachi is the sixth strongest.

Pachi has not participated in real world tournaments and events much so far.
The distributed Pachi participated in the Human vs. Computer Go Competition,
SSCI 2011 Symposium Series on Computational Intelligence in Paris. It played
three games against professional players on 19× 19 and won a 7-handicap match
against Zhou Junxun 9-dan professional [Tai11] (commonly accepted as one of
the top current professional players). The game is shown in Fig. 3.7. It evolved
to a complicated struggle for survival of invading white group; Zhou Junxun com-
mented that Pachi played on professional level when killing it. In the European
Go Congress 2011 Computer Go tournament [Eur11], distributed Pachi tied with
Zen for the �rst place in the 19× 19 section.

Pachi has some clear weaknesses. It frequently maintains even game or gains
upper hand against higher ranked programs in the beginning, but is prone to
misevaluating many positions (especially life and death problems) due to its ag-
gressive use of many heuristics and relying purely on RAVE exploration (however,
we have found these settings to be at least a local optimum, so simply encourag-
ing more exploration is not a remedy). Pachi is perhaps the strongest program
using rule-based playouts which might contribute to this issue.

36

A B C D E F G H J K L M N O P Q R S T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

12

3

45

6

7

8

9

10 11

12

13

14

15

16

1718

19

20

21

22

23

24

25 26 27 28

29

30

31

32

33

34 35

36

3738

3940

41

4243 44

45 46

47 48

49

5051 52

53 54

5556

57

58

59

60

61 62

63

64

65

66

67

68 69

70 71

72

73

7475 76

77

78

79

80

81

82

83

84 85

86 87

88 8990 9192

9394

95

96

97 98

99

100

101102

103

104

105 106

107

108

109 110

111

112

113

114

115

116 117

118

119 120

Figure 3.7: 7-handicap game between distributed Pachi (black) and Zhou Junxun
9-dan professional at SSCI 2011. White resigns after 120 moves.

37

4. Dynamic Komi

The Monte Carlo Tree Search in the game of Go tends to produce unstable and
unreasonable results when used in situations of extreme advantage or disadvan-
tage, due to poor move selection because of low signal-to-noise ratio; notably,
this occurs when playing in high handicap games, burdening the computer with
further disadvantage against the strong human opponent.

Here, we explore and compare multiple approaches to mitigate this problem
by arti�cially evening out the game based on modi�cation of the �nal game score
by variable amount of points (�dynamic komi�) before storing the result in the
game tree.

4.1 The Extreme Situation Problem

One common problem of the Monte Carlo based methods is that by de�nition,
they do not adapt well to extreme situations, i.e. when faced with extreme
advantage or extreme disadvantage.1 This is due to the fact that MCTS considers
and maximizes winning expectation, not the score margin. If a game position is
almost won, the �safe�active� move that pushes the score margin forward will
have only slightly higher expected win expectation than a move with essentially
no e�ect, since so many games are already implicitly won due to random noise in
the simulations.

4.1.1 Handicap Games

A perfect example of such extreme situations occuring regularly are handicap
games. When two players of di�erent strength play together, a handicap is deter-
mined (as a function of the rank di�erence of the players). The handicap consists
of the weaker player (always taking black color) placing a given number of stones
on the board before the stronger player (white) gets to play her �rst move (Fig.
4.1). Usually, the handicap amount ranges between one stone2 and nine stones.
Thus, when playing against a beginner, the program can �nd itself choosing a
move to play on board with nine black stones already placed on strategic points.
Similarly, the program can begin with many stones and almost all simulations
being won at the beginning of e.g. an exhibition game against a professional
player.3

In practice, if a strong human player is faced with extreme disadvantage in
a handicap game, they tend to play patiently and wait for opponent mistakes
to catch up gradually; in even games, they usually try to set up di�cult-to-read
complications. An MCTS program however will seek the move that currently
maximizes the expected win probability � ideally, it would represent a sophisti-
cated trap, but in reality it tends to be rather the move the random simulations

1See Figures 4.3a and 4.3b for comparison with a classical program performance.
2The game begins as usual since black goes �rst in even game as well, but white will not

receive any compensation for black playing the �rst move.
3This is especially troublesome since these games are high-pro�le and the general software

level in Computer Go tends to be judged in part by performance in these games.

38

A B C D E F G H J K L MN O P Q R S T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

12

3

4

5

Figure 4.1: Example opening position from 6-handicap game (black PachIW vs.
white Lycoris, Apr 29 2011, KGS).

mis-evaluate the most, ending up making trivially refutable moves.
Similarly, a strong human in position of large advantage will seek to solidify

their position, defend the last remaining openings for attack and avoid complex
sequences with unclear result; then, they will continue to enlarge their score
margin if possible. MCTS program will make moves with minimal e�ect on the
safety of its stones or territory and carelessly engage in sequences with high danger
of mistakes; it will maximize the win expectation (of however biased and possibly
misevaluating simulations) without regard to score margin,4 creating the danger
of losing the game.

4.2 The Dynamic Komi Technique

One possible way of tackling the described problem is using the �dynamic komi�
technique. As mentioned in Sec. 1.1, komi is a point penalty imposed on one of
the players; e.g. in even games, black has the right of the �rst move, but gives
white 7.5 komi5 as a compensation: at the game end, 7.5 points will be added to
white score as a compensation for not moving �rst. (Conversely, komi value of
−7.5 would be black taking reverse 7.5 komi and receiving a bonus of 7.5 points
to her score at the game end; this would be a form of white handicapping herself.
In handicap games, the usual komi � also used in our experiments � is 0.5,
therefore ties are broken in favor of white but white gets no compensation for
moving second, being the stronger player.)

The dynamic komi approach suggests that depending on the board situation,
the program should adjust the internally used komi value to make the game more

4Up to value scaling.
5The exact komi value may vary; fractional value is used to avoid ties.

39

even � either giving the program virtual advantage in case it is losing in reality,
or burdening it with virtual disadvantage when it is winning too much in the
actual game.6

We have decided to implement and test several approaches to dynamic komi.
Our test-case is performance in various handicap settings (since it is an obvious
and well-de�ned example of the extreme situations described earlier) and also
general performance in even games (where the extreme situations � with a chance
of overtuning them � can occur naturally time by time).

In the following text and algorithmic descriptions, we will assume the black
player's perspective � increasing the komi means giving extra advantage to the
opponent, decreasing the komi corresponds to taking extra advantage on oneself.
Real code needs to reverse the operations in case the computer is playing as white.

4.2.1 Prior Work

It has been long suggested especially by non-programmer players in the Computer
Go community to use the dynamic komi approach to balance the pure winrate
orientation of MCTS, however it has been met with scepticism from the program
authors since it introduces arti�cial inaccuracy to the game tree and it was not
clear how to deal with it in a rigorous way.

However, during our research we have become aware that some forms of dy-
namic komi are used in some programs. Many Faces of Go uses an algorithm
analogous to our Linearly Decreasing Handicap Compensation with slightly dif-
ferent constants [Fota]. Hiroshi Yamashita has independently proposed an algo-
rithm used in his program Aya that is similar to our Score-based Situational
Compensation, along with some positive experimental results [Yam].

4.3 Linearly Decreasing Handicap Compensation

The simplest approach we used successfully was to simply special-case handicap
games and try to stabilize the reading by imposing a komi on the program based
on the number of handicap stones and linearly diminishing the komi throughout
the game:

Algorithm 3 LinearHandicap

Require: MoveNum is the number of the current move to play.
if MoveNum > M then

Komi← 0
return

end if
KomiByHandicap← h · NumHandi
Komi← KomiByHandicap · (1− MoveNum

M
)

6The actual �nal score count is of course not a�ected by the dynamic komi and the opponent
needs not even be aware of it; it is used only to change internal evaluation of the simulations
within the program.

40

 30

 40

 50

 60

 70

 80

 90

 100 150 200 250 300

w
in

 ra
te

 v
s.

 G
N

U
G

o1
0

[%
]

number of moves with dynamic komi

Pachi black, 3 stones
Pachi black, 6 stones

(a) h = 7 with various values of M

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

0
[%

]
handicap stone value

Pachi black, 3 stones
Pachi black, 6 stones

(b) M = 200 with various values of h

Figure 4.2: Performance in handicap games.

M denotes the number of moves for which the dynamic komi e�ect should
last; we have found the optimal value to be around 200 (see Fig. 4.2a). h is the
point value of single handicap stone; values around 7 work best for us (Fig. 4.2b).7

We should note that we compute the exact komi value in the tree leaf where we
start the simulation. That implies the nice property that even when reusing parts
of the tree after generating a �nal move, each node has all games played with the
same komi. Since our next models will have no such property, we have checked its
e�ect; we were not able to measure a statistically signi�cant performance decrease
when applying the same komi value computed on tree root in all simulations.
Therefore, we assume that it is safe not to preserve this property.

4.4 Situational Compensation

A more sophisticated way to adjust komi throughout the game is adapting to
the currently perceived situation on the board. We are not limited to the case
of handicap games, but determining, implementing and tuning the mechanism is
more di�cult.

The situational compensation can be decomposed to several aspects: how to
judge the current situation, how often to re-adjust the komi, and how much to
adjust the komi in various phases of the game.

7The value of one extra handicap stone is twice the value of the standard komi [Gai] so
approximately 14 points. However, dynamic komi apparently works best when only a certain
percentage of handicap stone value is added to the komi. At any rate, at least in the (4, 14)
range the e�ect of this constant is very small. The optimal value is not statistically clear,
altough we have of course gathered more results during the development than just Fig. 4.2b.

41

4.4.1 Situation Measure

Score-based Situational Compensation

One way to assess the situation is by observing the expected score of the Monte
Carlo simulations over a time period (e.g. the previous move) and adjust the
komi so that E[score]−∆komi → 0.

Algorithm 4 ScoreSituational

Require: E[score] is the average score over reasonable amount of simulations
(including then-used dynamic komi).
if MoveNum < 20 then

Komi← LinearHandicap

return
end if
BoardOccupiedRatio← OccupiedIntersections

Intersections

GamePhase← BoardOccupiedRatio + s
KomiRate← (1 + exp(c ·GamePhase))−1

Komi← Komi + KomiRate · E[score]

This way (assuming c > 0), at the game beginning we adjust the dynamic komi
by measured average game result (except the �rst few moves where meaningless
�uctuations are expected to be large), up until a certain point in the game when
we dramatically reduce the amount of further komi changes. The phase parameter
s determines the point in the game when the phase shift happens.

The best values we have found are c = 20 and s = 0.75, but they still perform
worse than the approach presented below. We have also tried other KomiRate
transformations, without much success.

Value-based Situational Compensation

The other way to assess the game situation and amplify winrate di�erences be-
tween candidate tree nodes is to look directly at the winrate values at the root
of the tree and adjust the komi to put the values within a certain interval.

We will divide the winrate value to three ranges: red (losing), yellow (highest
winrate resolution), and green (winning). We will call the upper bound of red zone
red, the lower bound of green zone green. Our goal shall then be to dynamically
adjust the komi to keep the winrate in the yellow zone, that is between red and
green.

Furthermore, we need to avoid ��apping� around critical komi value especially
in the endgame � when the true score of the game is well established (i.e., very
near the game end), winrate will be high with komi n and much lower with komi
n + 1. To alleviate this problem, we introduce a ratchet variable recording the
lowest komi for which we reach red zone; we then never give this komi or more.
(This applies only to giving extra komi to the opponent when our situation is
favorable; in case of negative komi compensating for unfavorable situation, we
are eager to �ap into the red zone in order not to get �xed in a permanently lost
position and keep trying to make the game at least even again.) Optionally, the
ratchet can expire after several moves.

42

Algorithm 5 ValueSituational

Require: Value is the winning rate over reasonable amount of simulations (in-
cluding then-used dynamic komi).
if MoveNum < 20 then

Komi← LinearHandicap

Ratchet←∞
return

end if
if Value < red then
if Komi > 0 then

Ratchet← Komi
end if
Komi← Komi− 1

else
if Value > green ∧Komi < Ratchet then

Komi← Komi + 1
end if

end if

The optimal values we have found are red = 0.45, green = 0.5 � that
is, locking oneself into a slightly disadvantageous position, allowing to give the
opponent an advantage but never expiring the ratchet. This is curious: in our
strategy, it seems best to allow giving extra komi (evening out a game we are
winning) at the beginning, but if we at any point lose the advantage, we only
allow taking extra komi (balancing a game we are losing) from then on.

Using this kind of situational compensation has an interesting consequence.
Normally, the program's evaluation of the position can be determined by the
winrate percentage, representing the program's estimate of how likely the color
to play is to win the game. However, here the value is always kept roughly �xed
and instead, the program gives a bound on the likely score margin in the given
situation � the applied extra komi.8

4.4.2 Komi Adjustment

There is a question of how often to adjust the komi: we can either determine the
dynamic komi for the whole next move based on information gathered throughout
the whole previous move (o�ine komi), or we divide the tree search for a single
move into �xed-size time slices and re-adjust dynamic komi in each slice based on
feedback from the previous slice (online komi); all slices work on the same tree,
so no simulations are needlessly lost.

We have found the latter to be a signi�cantly better approach, allowing to
quickly �ne-tune the komi to an �optimal� value during the search. The downside
is of course that values obtained with varying komi values are mixed within a
single tree, however we have not found this too harmful.

8Note that the same tree policy, choosing the best value (expectation) available at the
moment, is of course used.

43

Table 4.1: Dynamic Komi Performance � Even Games

Method Opponent Time per Game Win Rate

Pachi None GNUGo 3.6min 27.3%± 3.2%

Pachi ScoreSit GNUGo 3.6min 26.3%± 2%

Pachi ScoreSit Pachi None 3.6min 46%± 2%

Pachi ScoreSit Pachi ValueSit 3.6min 43.4%± 1.8%

Pachi ValueSit GNUGo 3.6min 29%± 2.6%

Pachi ValueSit Pachi None 3.6min 54.2%± 3.4%

Pachi ValueSit Pachi None 10min 55.6%± 2.2%

Pachi ValueSit Pachi None 20min 59.4%± 3.2%

Pachi ValueSit Pachi None 30min 58.3%± 3.4%

Another question is the size of single komi adjustment step in case of value-
based dynamic komi: when using online komi, the �nest adjustment amount of 1
point worked best for us. We expect that more complicated arrangement would
have to be in place in case another method is used.

We have discovered that the situational dynamic komi methods are not stable
at the game beginning, especially in handicap games. We have obtained small
improvement by using the LinearHandicap for the �rst n moves9 and only then
switching to the situational compensation.

The �nal question is how to limit the amount of favourable komi imposed
on the player; surely, with extra 100 komi in favour, the board examination
completely loses touch with reality � also, deciding when to resign may become
complicated. We have found that 30 is the top useful value for favorable komi;
moreover, we stop allowing negative komi altogether when we reach 95% of the
game10 in order to resign in cases when we cannot catch up anymore.

4.5 Performance Discussion

Our tests were performed on the 19×19 board.11 We perform play-testing against
GNUGo v3.7.12 level 10 and self-play testing.

In table 4.1, we present our measurements of various dynamic komi methods
in even games. Even though the improvement against GNUGo is not statistical-
ly signi�cant in the presented table, based on many tests with various settings
throughout the development we believe that there is a tangible small improve-
ment. The improvement in self-play is much more pronounced and increases with
alotted time.

In Figure 4.3a, we present measurements of dynamic komi e�ect in handicap
games when taking black and varying amount of stones. We compare Pachi with

9We use n = 20 for 19× 19, n = 4 for 9× 9.
10Estimation based on board �ll ratio.
11We have done some informal testing that indicates dynamic komi performing well on 19×19

does not deteriorate 9× 9 performance.

44

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

0
[%

]

handicap [stones]

GNUGo level 1
Pachi none

Pachi Linear
Pachi Situational

(a) Playing black

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

 [%
]

handicap [stones]

GNUGo level 10
Pachi none

Pachi Linear
Pachi Situational

(b) Playing white

Figure 4.3: Dynamic komi in handicap games.

no dynamic komi, the linear komi and value-based situational compensation.
The thinking time of Pachi is �xed on 3.6 minutes per game � this means very
fast time controls, but allows to gather su�cient sample sizes. GNUGo Level
1 performance is included for further comparison; Level 1 achieves even better
results than Pachi, but it is di�cult to judge how much the usual self-play e�ects
interfere with the performance, i.e. if MCTS performance in handicap games still
has such a long way to go as it might seem here.

In Figure 4.3b we show measurements of dynamic komi e�ect in handicap
games when taking white and giving varying amount of stones; the opponent is
GNUGo Level 1 and GNUGo Level 10 is a reference. It is apparent that while
linear komi is not e�ective in this case, value-based situational komi gives the
expected improvement.

The results clearly show that dynamic komi is a signi�cant playing perfor-
mance improvement in handicap games. They also indicate that it can enhance
program performance in even games. Value-based situational compensation �ts
the bill as a universal dynamic komi method, yielding an improvement for both
handicap and even games. Alternatively, linear handicap compensation may be
implemented very easily in any program to get just the shown major improvement
in handicap game performance against stronger players.

Our �ndings have a remarkable consequence � it appears that MCTS trees
are tinker resilient to shifts in the evaluation function; if the evaluation function
is adjusted to give a more even result in the middle of the search, the search tree
can cope well and the end result is an improvement, even though the values in
the tree have not been obtained consistently.

45

5. Criticality-based Biasing

We now proceed to a strategy that aims to focus tree search on �hot� parts of
the board which are critical for winning the game, a statistics that we can gather
quickly on the �y similarly to the AMAF information.

We call this the point criticality. While AMAF collects information on
moves played after the current move and correlates them with winning the game,
the criticality collects information on the ownership of points in the �nal position
and correlates the ownership with winning the game � i.e., covariance of player
owning the intersection at the game end and winning the game. (Fig. 5.1.)

We can then use criticality in a manner similar to the AMAF statistics to
guide the exploration, or as a measure to use in a more high-level strategy for
processing information on local positions.

(a) Ownership (blue: black territory, green:
white territory)

(b) Criticality (brighter is higher)

Figure 5.1: A sample misevaluated position involving a semeai in the top left
corner. White group is considered dead while it actually wins the semeai, but
criticality of any moves in the vicinity is very high. (Reproduced from [Cou09]
with permission.)

5.1 Criticality Measure

Let C(x) be criticality for coordinate x; µwin is expectation of simulation winner
owning the coordinate, µb(x) and µw(x) are expectations of black and white own-
ing the coordinate, respectively; µb and µw are expectations of black and white
winning the simulation. Two concrete measures were proposed � [Cou09]:

CCoulom(x) = µwin(x) − (µb(x)µb + µw(x)µw)

and [Pel+09]:
CPell.(x) = µb,b(x)µw,w(x) − µw,b(x)µb,w(x)

46

Both formulas are equivalent to the classic covariance formula Cov(X, Y) =
EXY − EXEY ; we have found a rearranged version of the CCoulom(x) formula
most e�cient since it requires only a single multiplication and tracking of minimal
amount of data in the tree:

CPachi(x) = µwin(x) − (2µb(x)µb − µb(x) − µb + 1)

5.2 Using Criticality

Our main contribution here is a method to e�ciently use criticality in the RAVE
equation. Originally, [Cou09] introduced criticality CCoulom as a criterium for
progressive widening (see Sec. 2.3.2), i.e. initially choosing only from tree nodes
featuring highest criticality. He reported modest improvement in self-play ex-
periments, but only minor strength increase against GNUGo. Independently,
[Pel+09] proposed covariance measure CPell. as an additional UCB1 urgency term:

µi + c

√
2 lnn

Ti(n)
+ 2CPell.(i)

This was a good improvement to plain UCT, but did not improve MCTS that
already used the RAVE policy.

Since Pachi uses progressive bias instead of progressive widening, we chose to
also incorporate criticality in the tree policy formula. However, we see a similarity
between AMAF statistics and the point ownership statistics for criticality, and
therefore we decided to decrease the criticality weight of well explored nodes the
same way we already handle AMAF expectation in the RAVE formula. Therefore,
we incorporate criticality in the RAVE formula (Sec. 2.3.3):

simsCrit = |CPachi(x)| · simsAMAF

winsCrit =

{
CPachi(x) > 0 simsCrit

CPachi(x) < 0 0

simsRAV E = simsAMAF + simsCrit

winsRAV E = winsAMAF + winsCrit

The β-formula is used as before to manage a transition from RAVE to regular
expectation. We simply incorporate the criticality in the RAVE part by adding
virtual won simulations to the AMAF statistics proprotional to both current
amount of AMAF statistics and the strength of the move criticality. Therefore,
the criticality contribution stays constant as AMAF samples are gathered, but its
overall weight in tree policy is reduced properly as the move is actually explored.
The win or loss is minimax-adjusted for the color to play, of course. Criticality
can also indicate that moves are anticorellated, in this case we add losses.

We track criticality statistics for each node of the tree separately, therefore
measuring move criticality only in a single context. We use criticality only when
the node is visited at least n = 250 times.1

1Based on some informal experiments, it might be appropriate to adjust this value on the
total number of playouts.

47

 56

 58

 60

 62

 64

 66

 68

 70

 10 100 500 1000 1500 2000

w
in

 ra
te

 v
s.

 G
N

U
G

o
le

ve
l 1

0
[%

]

min. playouts in node

Figure 5.2: Performance of criticality with various minimum playouts bounds

5.3 Performance Discussion

When testing with 500s/game against GNUGo level 10 (on 19× 19 with no komi
and GNUGo black), the baseline version wins 57.6%±2.1% while the version with
criticality enabled wins 66.9%± 2.2%, proving that criticality gives a measurable
improvement. Fig. 5.2 shows that limiting the criticality to nodes with su�cient
number of playouts is important (but being too strict diminishes the e�ect, at
least with these time settings).

Normally, the criticality statistics simply test for presence of stone of the
appropriate color at the given point in the �nal position. We have also tested using
the point local value (Sec. 2.4.3) instead. While this appears bene�cial with �xed
number of simulations, the performance hit caused by local value computation
makes this infeasible. We believe that we can optimize this computation enough
in the future to make its usage in this case bene�cial with real time settings.

Currently, the master branch contains an inferior default criticality settings.
Use the parameter policy=ucb1amaf:crit_negflip:crit_min_playouts=250.

48

6. Liberty Maps

In Pachi, we explore purely based on RAVE, RAVE statistics come from moves
played in the playouts and playout heuristics cause some moves to be played far
more often than others. When the heuristics suggest useful moves, this greatly
improves the game tree convergence and this founds the basis of Pachi's strength.
However, when the heuristics are wrong, it causes misevaluations that often cause
loss of the whole game.

We propose an approach to solve this problem by allowing online learning of
the heuristics. Our idea is to track success rate of various heuristic candidates and
then use this information to bias future move choice. We perform this learning on
two group-speci�c heuristics that deal with 2-liberty and n-liberty (2 < n ≤ 4)
groups. They will examine the group's surrounding and suggest a set of moves
that attempt to increase own group liberties or reduce enemy group liberties.
Usually, multiple moves are possible and some of them are more e�cient than
others � it is our aim to play the more e�cient moves more frequently.

6.1 Collecting Ratings

First, we need a way to key local group heuristic choices so that we can share
collected data in similar situations. We assign each board point a hash number.
Let a hash of a point be this hash number, deterministically modi�ed based on
the occupation of its direct neighbors. Let a hash of point set then be xor of all
point hashes.1 Liberty hash shall then be a hash of all liberty points of a group.
Therefore, liberty hash of a group captures the particular con�guration of the
group liberties in the given situation, including prospects of escape by each of
the liberties. Liberty map is then a mapping from liberty hash to a set of move
ratings.

Ratings for the liberty map are collected as follows:

Algorithm 6 LibMapCollect

H ← {}
During the playout:
for all heuristic choices (libhash,move) do
H ← H ∪ (libhash,move)

end for
In the �nal position:
for all (libhash,move) ∈ H do

UpdateLibMap((libhash,move), lvalue(move))
end for

As heuristics make choices for various groups within a simulation, (hash,move)
pairs are noted. When the simulation is �nished, the rating of each noted move
is updated based on its local value in the �nal position. The rating represents the
average local value of the move,2 i.e. E[lvalue(move) | libhash].

1This is a variant of the Zobrist hash [Zob70a].
2If the goal was to escape a group, high local value for the escaping move means the group

49

Table 6.1: Liberty Map Performance (19× 19, no komi against GNU Go)

Player Opponent Time Settings Win Rate

Baseline GNU Go L10 500s/game 56.4%± 2.2%

LibMap GNU Go L10 500s/game 59.8%± 2.1%

Baseline GNU Go L10 6000p/move 45.3%± 2.2%

LibMap GNU Go L10 6000p/move 50.3%± 2.3%

LibMap Baseline 500s/game 50.7%± 2.6%

LibMap Baseline 6000p/move 55.1%± 2.6%

6.2 Using Ratings

When a heuristical choice is made from a set of candidates, usually it is uniformly
random selection. When using liberty maps, the move rating is accounted for:

Algorithm 7 LibMapChoose

Require: libhash describes the tackled group, M is array of proposed moves
i← random(|M |)
With probability p = 0.1 unconditionally return M [i]
j ← i
repeat
m←M [j]
if ¬∃LibMap(libhash,m) then
return m

end if
if LibMap(libhash,m) ≥ 0.7 then
return m

end if
j ← (j + 1) mod |M |

until i = j
return M [i]

Therefore, given a group described by libhash and set of candidate moves M ,
preference is given to moves whose average eventual local value is higher than
some constant (we use 0.7) or for which no local value has been stored yet.

The liberty map is shared for the whole tree and it is never reset, with the (cer-
tainly simplifying) assumption that the liberty hash fully describes the particular
predicament of a group.

6.3 Performance Discussion

Table 6.1 shows that while liberty maps show demonstrable gain when given the
same number of simulations, they are not quite convincing when taking the extra

survived successfully. Similarly if the goal was to kill a group, high local value for killing move
means the area eventually became the attacker's territory.

50

time consumed into account; the gain is on the edge of statistical signi�cance
and more tuning and optimizations are needed for liberty maps to represent an
important improvement.

We have tried using simple 0 or 1 instead of local value and the global result
of a game as the move rating. Both seem to be inferior to local value.

As of the time of submission, the code is not merged in the master branch of
our Git repository yet; it can be found in the libmap branch.

51

7. Future Directions

We hope the kind reader will bear in mind that much of our work presented here
is just a snapshot of ongoing research. There is certainly a lot of room for im-
provement in our implementation. We expect to still gain large improvements in
some of the algorithms presented here and we also have many ideas for completely
new techniques.

7.1 Information Sharing

All the proposed techniques shall be investigated further. With regard to dynamic
komi, the ratchet role and behavior should be looked into. Also, alternative
dynamic komi scheme with more focus on the endgame seems possible; Jean-loup
Gailly recently began investigating this.

There is a conceptual problem with liberty maps that still needs to be ad-
dressed � they select moves that are successful, but this may not mean moves
that are good but moves that get bad replies in the simulation policy; in e�ect,
optimizing for later failure.

7.1.1 Dynamic Score-value Scaling

Normally, we use the value of 0 as loss and value of 1 as win when updating
the tree node expectations. In Pachi and some other programs, 0.04 of this has
been allocated to score di�erence to slightly prefer larger wins and discourage
large losses. Both likelihood of win and aesthetics of moves could be improved
by dynamically giving more weight to average score margins of tree branches in
suitable situations. Many guiding metrics come to mind � from simply the move
number (like we use to determine the game phase for time controls) to the number
of �unstable stones� on board.

7.1.2 Local Trees

We call our original and ultimate idea for e�cient information sharing local
trees. Aside of the main game tree, a �local tree� storing only non-tenuki se-
quences would be maintained by MCTS. It is built and descended in parallel
with the main tree, but every time tenuki occurs (move is too far away from the
last one in CFG topology), the node pointer in local tree is returned to the root.1

The aim is to record �local solutions� of various local situations. If the game
tree discovers the proper sequence to resolve a tactical problem, the horizon
e�ect (Sec. 2.4.2) may prevent it from being used in the tree, however the local
tree should enable sharing the solution among various main game tree branches
nevertheless.

Unfortunately, we have not been able to make the local trees truly e�ective so
far. Two obvious questions arise � what values to store for local sequences and
how to use the information stored in local trees. We have invented the local value

1Two trees are maintained, one for sequences starting with black move, another for white-�rst
sequences.

52

metric (Sec. 2.4.3) for the evaluation purpose and update each tree branch with
eventual local value of the �rst move in the branch � the idea is that successful
move (and its followups) will convert the occupied point to the player's territory.
Criticality might be also involved in selection of sequences from local trees.

As of using the information, integrating the value of played-through local
sequences in the RAVE equation is not su�cient � to counter the horizon e�ect,
simulations must be a�ected by the data. Our currently investigated approach is
�sequence forcing�, picking a given number of successful sequences from the tree
and playing them out after the main tree leaf is reached but before the standard
randomized playout takes over. There are many crucial choices to make when
executing this approach and they still need thorough investigation.

7.1.3 Tactical Solvers

Liberty maps and local trees could be used to e�ciently integrate external sources
of information, e.g. tsumego solvers or other dedicated tactical search modules, in
the simulations. There are successful algorithms to solve many tactical problems,
but they are usually too slow to be used regularly in simulations and e�cient
means to reuse their results need to be found.

7.2 Other Research

Computer Go e�orts should not be limited to achieving maximum strength and
beating the humans. The tools may be also used to improve our understanding
of the game and as a teaching aid to help people enjoy the game more. Jonathan
Chetwyng is using Pachi while investigating ways to visualize the search and
various metrics like point ownership and criticality at Peepo.com.

53

Conclusion

We have given a basic overview of the Computer Go problem and the MCTS
algorithm. We presented our MCTS implementation Pachi, exploring the impact
of various variables on playing strength and describing our minor enhancements.
We then focused on the information sharing methods, explaining the motivation,
describing the individual algorithms and again presenting measurements proving
the e�ectivity of our proposals. While some of our ideas merely show promise and
need further work to become truly e�ective, other clearly demonstrate their merit
and lead to demonstrable signi�cant improvements of tree search performance.

Computer Go is subject of intense research, while MCTS is making headways
in other �elds as well � not just di�erent games, but also for solving other control
and optimization problems. We sincerely hope our contribution to this research
will be useful for pushing the Computer Go research forward as well as improving
MCTS performance in other applications.

54

Bibliography

[ABF02] Peter Auer, Nicolò C. Bianchi, and Paul Fischer. �Finite-time Analy-
sis of the Multiarmed Bandit Problem�. In: Machine Learning 47.2/3
(2002), pp. 235�256. url: http://citeseer.ist.psu.edu/auer0
0finitetime.html.

[All94] Victor Allis. �Searching for Solutions in Games and Arti�cial Intelli-
gence�. PhD thesis. University of Limburg, Maastricht, The Nether-
lands, 1994. isbn: 9090074880.

[Bau+] Petr Baudi² et al. Pachi � Simple Go/Baduk/Weiqi Bot. url: http:
//pachi.or.cz/.

[Bau10] Petr Baudi². 40-core Pachi on KGS. 2010. url: http://groups.g
oogle.com/group/computer-go-archive/browse_thread/threa
d/e026ffa84c9c51a0.

[BC01] Bruno Bouzy and Tristan Cazenave. �Computer Go: an AI Oriented
Survey�. In: Arti�cial Intelligence 132 (2001), pp. 39�103.

[BFB+] Daniel Bump, Gunnar Farneback, Arend Bayer, et al. GNU Go. url:
http://www.gnu.org/software/gnugo/gnugo.html.

[BH03] Bruno Bouzy and Bernard Helmstetter. �Monte Carlo Go Develop-
ments�. In: Advances in Computer Games conference (ACG-10), Graz
2003. Ed. by Ernst. Kluwer, 2003, pp. 159�174. url: http://www.m
ath-info.univ-paris5.fr/~bouzy/publications/bouzy-helms
tetter.pdf.

[Boo90] Mark Boon. �A Pattern Matcher for Goliath�. In: Computer Go 13
(1990), pp. 12�23.

[Bru93] Bernd Bruegmann. Gobble � Monte Carlo Go. 1993. url: http:
//www.cgl.ucsf.edu/go/Programs/Gobble.html.

[BW94] Elwyn Berlekamp and David Wolfe. Mathematical Go: Chilling Gets
the Last Point. A. K. Peters, 1994. isbn: 1568810326.

[Cha+07] Guillaume Chaslot et al. �Progressive Strategies for Monte-Carlo Tree
Search�. In: Joint Conference on Information Sciences, Salt Lake City
2007, Heuristic Search and Computer Game Playing Session. 2007.
url: http://www.math-info.univ-paris5.fr/~bouzy/publicat
ions/CWHUB-pMCTS-2007.pdf.

[Cha+10] Guillaume Chaslot et al. �Adding Expert Knowledge and Exploration
in Monte-Carlo Tree Search�. In: Advances in Computer Games. Ed.
by H. van den Herik and Pieter Spronck. Vol. 6048. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, pp. 1�13.

[Cie+] Ale² Cieply et al. EGF ratings system � System description. url:
http://www.europeangodatabase.eu/EGD/EGF_rating_system.
php.

[Cou07] Rémi Coulom. �Computing Elo Ratings of Move Patterns in the Game
of Go.� In: ICGA Journal (2007), pp. 198�208.

55

http://citeseer.ist.psu.edu/auer00finitetime.html
http://citeseer.ist.psu.edu/auer00finitetime.html
http://pachi.or.cz/
http://pachi.or.cz/
http://groups.google.com/group/computer-go-archive/browse_thread/thread/e026ffa84c9c51a0
http://groups.google.com/group/computer-go-archive/browse_thread/thread/e026ffa84c9c51a0
http://groups.google.com/group/computer-go-archive/browse_thread/thread/e026ffa84c9c51a0
http://www.gnu.org/software/gnugo/gnugo.html
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://www.cgl.ucsf.edu/go/Programs/Gobble.html
http://www.cgl.ucsf.edu/go/Programs/Gobble.html
http://www.math-info.univ-paris5.fr/~bouzy/publications/CWHUB-pMCTS-2007.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/CWHUB-pMCTS-2007.pdf
http://www.europeangodatabase.eu/EGD/EGF_rating_system.php
http://www.europeangodatabase.eu/EGD/EGF_rating_system.php

[Cou09] Rémi Coulom. Criticality: a Monte-Carlo Heuristic for Go Programs.
Invited talk, University of Electro-Communications, Tokyo, Japan.
2009. url: http://remi.coulom.free.fr/Criticality/.

[CWH08] Guillaume Chaslot, Mark Winands, and H. van den Herik. �Paral-
lel Monte-Carlo Tree Search�. In: Computers and Games. Ed. by H.
van den Herik et al. Vol. 5131. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, pp. 60�71.

[Dai] Don Dailey. Computer Go Server. url: http://cgos.boardspace.
net/.

[Dra+] Peter Drake et al. Orego. url: http://legacy.lclark.edu/~drak
e/Orego.html.

[EM10] Markus Enzenberger and Martin Müller. �A Lock-Free Multithread-
ed Monte-Carlo Tree Search Algorithm�. In: Advances in Computer
Games. Ed. by H. van den Herik and Pieter Spronck. Vol. 6048. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2010,
pp. 14�20.

[Enz] Markus Enzenberger. GoGui � graphical user interface to programs
that play the board game Go. url: http://gogui.sourceforge.ne
t/.

[Enz+10] Markus Enzenberger et al. �Fuego � An Open-source Framework for
Board Games and Go Engine Based on Monte-Carlo Tree Search�. In:
IEEE Transactions on Computational Intelligence and AI in Games
2:4 (2010), pp. 259�270.

[Enz96] Markus Enzenberger. The Integration of A Priori Knowledge into a
Go Playing Neural Network. 1996. url: http://webdocs.cs.ualbe
rta.ca/~emarkus/neurogo/neurogo1996.html.

[Fai08] John Fairbarn. �History of Go�. In: Games of Go on Disk (GoGoD).
2008. url: http://www.gogod.co.uk/.

[Far] Gunnar Farnebäck. GTP � Go Text Protocol. url: http://www.ly
sator.liu.se/~gunnar/gtp/.

[Fota] David Fotland. Re: Dynamic Komi's basics. Feb 11, 2010. url: http:
//www.mail-archive.com/computer-go@computer-go.org/msg1
3470.html.

[Fotb] David Fotland. The Many Faces of Go. url: http://www.smart-g
ames.com/manyfaces.html.

[Gai] Jean-loup Gailly. Komi and the value of the �rst move. Apr 5, 2010.
url: http://www.mail-archive.com/computer-go@dvandva.or
g/msg00096.html.

[Gra+01] Thore Graepel et al. �Learning on Graphs in the Game of Go�. In:
Arti�cial Neural Networks � ICANN 2001. Ed. by Georg Dor�ner,
Horst Bischof, and Kurt Hornik. Vol. 2130. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2001, pp. 347�352.

56

http://remi.coulom.free.fr/Criticality/
http://cgos.boardspace.net/
http://cgos.boardspace.net/
http://legacy.lclark.edu/~drake/Orego.html
http://legacy.lclark.edu/~drake/Orego.html
http://gogui.sourceforge.net/
http://gogui.sourceforge.net/
http://webdocs.cs.ualberta.ca/~emarkus/neurogo/neurogo1996.html
http://webdocs.cs.ualberta.ca/~emarkus/neurogo/neurogo1996.html
http://www.gogod.co.uk/
http://www.lysator.liu.se/~gunnar/gtp/
http://www.lysator.liu.se/~gunnar/gtp/
http://www.mail-archive.com/computer-go@computer-go.org/msg13470.html
http://www.mail-archive.com/computer-go@computer-go.org/msg13470.html
http://www.mail-archive.com/computer-go@computer-go.org/msg13470.html
http://www.smart-games.com/manyfaces.html
http://www.smart-games.com/manyfaces.html
http://www.mail-archive.com/computer-go@dvandva.org/msg00096.html
http://www.mail-archive.com/computer-go@dvandva.org/msg00096.html

[GS07] Sylvain Gelly and David Silver. �Combining online and o�ine knowl-
edge in UCT�. In: ICML '07: Proceedings of the 24th international
conference on Machine learning. New York, NY, USA: ACM, 2007,
pp. 273�280. isbn: 978-1-59593-793-3.

[GS08] Sylvain Gelly and David Silver. �Achieving master level play in 9x9
Computer Go�. In: AAAI'08: Proceedings of the 23rd national con-
ference on Arti�cial intelligence. Chicago, Illinois: AAAI Press, 2008,
pp. 1537�1540. isbn: 978-1-57735-368-3.

[GW06] Sylvain Gelly and Yizao Wang. �Exploration exploitation in Go: UCT
for Monte-Carlo Go�. In: Twentieth Annual Conference on Neural
Information Processing Systems NIPS 2006 (2006). url: http://ep
rints.pascal-network.org/archive/00002713/.

[HCL10] Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin. �Monte-Carlo
Simulation Balancing in Practice�. In: International Conference on
Computers and Games. Kanzawa, Japan, 2010. url: http://remi.
coulom.free.fr/CG2010-Simulation-Balancing/.

[Hol] Arno Hollosi. SGF File Format. url: http://www.red-bean.com/s
gf/.

[Hou] Jason House. Groups, liberties, and such. Oct 14, 2005. url: http:
//go.computer.free.fr/go-computer/msg08075.html.

[HP+] Arno Hollosi, Morten Pahle, et al. Sensei's Library. url: http://se
nseis.xmp.net/.

[KS06] Levente Kocsis and Csaba Szepesvári. �Bandit Based Monte-Carlo
Planning�. In:Machine Learning: ECML 2006. Ed. by Johannes Fürn-
kranz, Tobias Sche�er, and Myra Spiliopoulou. Vol. 4212. Lecture
Notes in Computer Science. 10.1007/11871842.29. Springer Berlin /
Heidelberg, 2006, pp. 282�293.

[Lew] �ukasz Lew. libEGO � Library of e�ective Go routines. url: https:
//github.com/lukaszlew/libego.

[LR85] Tze Leung Lai and Herbert Robbins. �Asymptotically e�cient adap-
tive allocation rules�. In: Advances in Applied Mathematics 6 (1985),
pp. 4�22.

[Odo+] Gary Odom et al. Kogo's Joseki Dictionary. url: http://waterfir
e.us/joseki.htm.

[Pel+09] Seth Pellegrino et al. �Localizing Search in Monte-Carlo Go Using
Statistical Covariance�. In: ICGA Journal 32:3 (2009), pp. 154�160.

[PM88] Stephen K. Park and Keith W. Miller. �Random number generators:
good ones are hard to �nd�. In: Communications of the ACM 31 (10
1988), pp. 1192�1201. issn: 0001-0782.

[Rob52] Herbert Robbins. �Some aspects of the sequential design of experi-
ments�. In: Bulletin of the American Mathematics Society. Vol. 58.
1952, pp. 527�535.

57

http://eprints.pascal-network.org/archive/00002713/
http://eprints.pascal-network.org/archive/00002713/
http://remi.coulom.free.fr/CG2010-Simulation-Balancing/
http://remi.coulom.free.fr/CG2010-Simulation-Balancing/
http://www.red-bean.com/sgf/
http://www.red-bean.com/sgf/
http://go.computer.free.fr/go-computer/msg08075.html
http://go.computer.free.fr/go-computer/msg08075.html
http://senseis.xmp.net/
http://senseis.xmp.net/
https://github.com/lukaszlew/libego
https://github.com/lukaszlew/libego
http://waterfire.us/joseki.htm
http://waterfire.us/joseki.htm

[RW79] Walter Reitman and Bruce Wilcox. �The structure and performance
of the interim.2 go program�. In: Proceedings of the 6th international
joint conference on Arti�cial intelligence - Volume 2. San Francis-
co, CA, USA: Morgan Kaufmann Publishers Inc., 1979, pp. 711�719.
isbn: 0-934613-47-8.

[Sch] William Schubert. KGS Go Server. url: http://gokgs.com/.

[ST09] David Silver and Gerald Tesauro. �Monte Carlo Simulation Balanc-
ing�. In: Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 2009.

[Tai11] NUTN Taiwan. Human vs. Computer Go Competition, SSCI 2011
Symposium Series on Computational Intelligence. 2011. url: http:
//ssci2011.nutn.edu.tw/result.htm.

[TT] John Tromp and Bill Taylor. The Logical Rules of Go. url: http:
//homepages.cwi.nl/~tromp/go.html.

[Wed05] Nick Wedd. Computer Go Tournaments on KGS. 2005�2011. url:
http://www.weddslist.com/kgs/index.html.

[Wol07] Thomas Wolf. �Two Applications of a Life & Death Problem Solver
in Go�. In: Journal of ÖGAI 26 (2 2007), pp. 11�18.

[Yam] Hiroshi Yamashita. Re: Dynamic Komi's basics. Feb 11, 2010. url:
http://www.mail-archive.com/computer-go@computer-go.or
g/msg13464.html.

[Zob70a] Albert L. Zobrist. A hashing method with applications for game play-
ing. Tech. rep. University of Wisconsin, 1970.

[Zob70b] Albert L. Zobrist. �Feature extraction and representation for pattern
recognition and the game of Go.� PhD thesis. University of Wisconsin,
1970.

[Eur11] European Go Federation. European Go Congress 2011 in Bordeaux,
Computer Go. 2011. url: http://egc2011.eu/index.php/en/com
puter-go.

[Fre91] Free Software Foundation. GNU General Public Licence. 1991. url:
http://www.gnu.org/licenses/gpl-2.0.html.

[Gel+06] Sylvain Gelly et al. Modi�cation of UCT with Patterns in Monte-
Carlo Go. English. Research Report RR-6062. INRIA, 2006. url:
http://hal.inria.fr/inria-00117266/en/.

[Sen] Sensei's Library. Rank � worldwide comparison. url: http://sens
eis.xmp.net/?RankWorldwideComparison.

58

http://gokgs.com/
http://ssci2011.nutn.edu.tw/result.htm
http://ssci2011.nutn.edu.tw/result.htm
http://homepages.cwi.nl/~tromp/go.html
http://homepages.cwi.nl/~tromp/go.html
http://www.weddslist.com/kgs/index.html
http://www.mail-archive.com/computer-go@computer-go.org/msg13464.html
http://www.mail-archive.com/computer-go@computer-go.org/msg13464.html
http://egc2011.eu/index.php/en/computer-go
http://egc2011.eu/index.php/en/computer-go
http://www.gnu.org/licenses/gpl-2.0.html
http://hal.inria.fr/inria-00117266/en/
http://senseis.xmp.net/?RankWorldwideComparison
http://senseis.xmp.net/?RankWorldwideComparison

List of Figures

1.1 Example �gure showing various Go situations. 6
1.2 Life and death of groups. 7

2.1 Example horizon e�ect position. 18

3.1 O�cial Pachi artwork by Radka Hane£ková. 20
3.2 Block schema of the Pachi architecture. 21
3.3 Performance of various time setting parameters. 31
3.4 Performance of parallelization and various time settings. 32
3.5 User PachIW . 35
3.6 User Pachi2 . 35
3.7 7-handicap game against Zhou Junxun 9-dan professional that

Pachi has won. 37

4.1 Example handicap opening position. 39
4.2 Performance in handicap games. 41
4.3 Dynamic komi in handicap games. 45

5.1 A sample misevaluated position with criticality visualized. 46
5.2 Performance of criticality with various minimum playouts bounds. 48

59

List of Tables

3.1 Performance with Various Exploration Coe�cients. 27
3.2 Performance of Various Prior Value Heuristics. 29
3.3 Performance of Various Playout Heuristics. 33

4.1 Dynamic Komi Performance � Even Games 44

6.1 Liberty Map Performance . 50

A.1 By-author Git History Breakdown 59

60

List of Abbreviations

AMAF All Moves as First

CFG Common Fate Graph

CGT Combinatorial Game Theory

GTP Go Text Protocol

JSON JavaScript Object Notation

KGS KGS Go Server

MCTS Monte Carlo Tree Search

NFS Network File System

RAVE Rapid Action Value Estimation

SGF Smart Game Format

UCB Upper Con�dence Bound

UCT Upper Con�dence Tree

61

A. Pachi Source Code

The Pachi source code can be found at http://repo.or.cz/w/pachi.git and
the current snapshot of the git repository (with the latest version checked out) is
also saved on the attached CD. Here, we only list some general information.

Statistics generated using David A. Wheeler's 'SLOCCount':1

SLOC Directory SLOC-by-Language (Sorted)
4138 top_dir ansic=4138
3987 uct ansic=3987
1075 distributed ansic=1075
1059 tactics ansic=1059
777 playout ansic=777
292 joseki ansic=250,perl=42
213 montecarlo ansic=213
213 t-play sh=213
106 t-unit ansic=106
99 tools perl=69,sh=30
95 replay ansic=95
36 random ansic=36
0 media (none)

Totals grouped by language (dominant language first):
ansic: 11736 (97.07%)
sh: 243 (2.01%)
perl: 111 (0.92%)

Total Physical Source Lines of Code (SLOC) = 12,090
Development Effort Estimate, Person-Years (Person-Months) = 2.74 (32.87)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 0.79 (9.43)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 3.49
Total Estimated Cost to Develop = $ 369,989
(average salary = $56,286/year, overhead = 2.40).

The Pachi source tree manifest follows:

COPYING debug.h joseki19.pdict ownermap.h random/ tactics/
CREDITS distributed/ media/ pachi.c random.c timeinfo.c
HACKING engine.h montecarlo/ pattern3.c random.h timeinfo.h
Makefile fbook.c move.c pattern3.h replay/ tools/
Makefile.lib fbook.h move.h playout/ stats.h uct/
README fixp.h mq.h playout.c stone.c util.h
TODO gtp.c network.c playout.h stone.h version.h
board.c gtp.h network.h probdist.c t-play/
board.h joseki/ ownermap.c probdist.h t-unit/

./distributed:
Makefile distributed.h merge.h protocol.h
distributed.c merge.c protocol.c

./joseki:
Makefile README base.c base.h joseki.c joseki.h sgfvar2gtp.pl

./media:
pachi-small.png pachi.jpg

./montecarlo:
Makefile internal.h montecarlo.c montecarlo.h

./playout:
Makefile light.c light.h moggy.c moggy.h

1We have removed the third-party twogtp.py script beforehand.

62

./random:
Makefile random.c random.h

./replay:
Makefile replay.c replay.h

./t-play:
TESTS autotest/ resum* test_in_context.sh*

./t-play/autotest:
README autotest-client* autotest-gather* autotest-prune* autotest-worker*
TODO autotest-clients* autotest-lib autotest-show* rc

./t-unit:
Makefile README sar.t test.c test.h

./tactics:
1lib.c 2lib.c Makefile ladder.h nakade.h nlib.h selfatari.h util.h
1lib.h 2lib.h ladder.c nakade.c nlib.c selfatari.c util.c

./tools:
complete-tromptaylor.gtp genmove19.gtp sgf-analyse.pl* twogtp.py*
complete.gtp gentbook.sh* sgf2gtp.pl*
genmove.gtp pattern3_show.pl* spirit.gtp

./uct:
Makefile internal.h plugins.c prior.c search.h tree.c uct.h
dynkomi.c plugin/ plugins.h prior.h slave.c tree.h walk.c
dynkomi.h plugin.h policy/ search.c slave.h uct.c walk.h

./uct/plugin:
example.c wolf.c

./uct/policy:
Makefile generic.c generic.h ucb1.c ucb1amaf.c

The Git commit history starts on Nov 11, 2007. Since then, 2606 commits
were made in the master branch, with the by-author breakdown given in Table
A.1.

Table A.1: By-author Git History Breakdown

Author Commits

Petr Baudi² 2393

Jean-loup Gailly 208

Matthew Woodcraft 3

Francois van Niekerk 1

63

B. Sample Pachi Session

An example Pachi session given in full. The option -t 5 sets maximum time
to 5 seconds per move; dumpthres=10000 reduces the subset of the game tree
shown after move is chosen. User input is shown in bold while debugging output
written to stderr is typeset slanted. Standard GTP output is shown in regular
font; for each input command, it is just a single line beginning with the equal
sign. Some super�uous lines have been culled.

$./pachi -t 5 dumpthres=10000
Random seed: 1312203069
boardsize 5
=

komi 24
Move: 0 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E
+-----------+

5 | |
4 | |
3 | |
2 | |
1 | |
+-----------+

=

genmove b
Fresh board with random seed 1312203069
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 2.00
[10000] best 0.552927 | seq C3 C4 D4 B3 | can C3(0.553) C4(0.483) E5(0.364) D4(0.493)
[20000] best 0.559103 | seq C3 C4 D4 B3 | can C3(0.559) C4(0.511) E5(0.334) D4(0.419)
[30000] best 0.592087 | seq C3 C4 D4 B3 | can C3(0.592) C4(0.499) E5(0.330) C5(0.264)
(UCT tree; root white; extra komi 0.000000; max depth 30)
[pass] 0.585/32528 [prior 0.000/0 amaf 0.000/0 crit -0.415] h=0 c#=7 <f4240>
[C3] 0.590/31603 [prior 0.750/28 amaf 0.590/31900 crit 0.129] h=0 c#=6 <f4244>
[C4] 0.585/30185 [prior 0.167/42 amaf 0.585/30307 crit 0.021] h=0 c#=14 <f424b>
[D4] 0.600/25244 [prior 0.875/56 amaf 0.598/27593 crit 0.128] h=0 c#=23 <f4259>
[B3] 0.585/17170 [prior 0.167/42 amaf 0.579/19554 crit 0.284] h=0 c#=22 <f426a>
[B4] 0.612/14939 [prior 0.900/70 amaf 0.606/15830 crit 0.119] h=0 c#=21 <f434e>
[C2] 0.599/13077 [prior 0.125/56 amaf 0.597/13922 crit 0.246] h=0 c#=20 <f4381>
[D3] 0.630/12165 [prior 0.900/70 amaf 0.630/12224 crit 0.055] h=0 c#=19 <f4aa2>
[A3] 0.619/10907 [prior 0.125/56 amaf 0.619/11468 crit 0.287] h=0 c#=18 <f5223>

[32594] best 0.590394 | seq C3 C4 D4 B3 | can C3(0.590) C4(0.497) E5(0.324) C5(0.273)
*** WINNER is C3 (3,3) with score 0.5904 (31603/32528:32528/32594 games), extra komi 0.000000
genmove in 2.50s (13021 games/s, 13021 games/s/thread)
playing move C3
Move: 1 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x x x |
4 | | 4 | x x x X x |
3 | . . X). . | 3 | x x X x x |
2 | | 2 | x x x x x |
1 | | 1 | x x x x x |
+-----------+ +-----------+

= C3

64

play w c4
Move: 2 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x x x |
4 | . . O). . | 4 | x x x X x |
3 | . . X . . | 3 | x x X x x |
2 | | 2 | x x x x x |
1 | | 1 | x x x x x |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 3.26
<pre-simulated 30185 games>
(UCT tree; root white; extra komi 0.000000; max depth 28)
[C4] 0.584/30703 [prior 0.167/42 amaf 0.585/30307 crit 0.021] h=0 c#=14 <f424b>
[D4] 0.599/25760 [prior 0.875/56 amaf 0.597/28109 crit 0.128] h=0 c#=23 <f4259>
[B3] 0.584/17679 [prior 0.167/42 amaf 0.577/20063 crit 0.285] h=0 c#=22 <f426a>
[B4] 0.610/15424 [prior 0.900/70 amaf 0.604/16326 crit 0.119] h=0 c#=21 <f434e>
[C2] 0.599/13077 [prior 0.125/56 amaf 0.595/14343 crit 0.246] h=0 c#=20 <f4381>
[D3] 0.630/12165 [prior 0.900/70 amaf 0.630/12224 crit 0.055] h=0 c#=19 <f4aa2>
[A3] 0.619/10907 [prior 0.125/56 amaf 0.619/11468 crit 0.287] h=0 c#=18 <f5223>

[518] best 0.599045 | seq D4 B3 B4 C2 | can D4(0.599) C2(0.533) D3(0.517) C5(0.479)
*** WINNER is D4 (4,4) with score 0.5990 (25760/30703:518/518 games), extra komi 0.000000
genmove in 0.10s (5132 games/s, 5132 games/s/thread)
playing move D4
Move: 3 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x X X |
4 | . . O X). | 4 | , x x X X |
3 | . . X . . | 3 | , , X X X |
2 | | 2 | , , , x x |
1 | | 1 | , , , x x |
+-----------+ +-----------+

= D4

play w b3
Move: 4 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x X X |
4 | . . O X . | 4 | , x x X X |
3 | . O)X . . | 3 | , , X X X |
2 | | 2 | , , , x x |
1 | | 1 | , , , x x |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 4.62
<pre-simulated 17679 games>
(UCT tree; root white; extra komi 0.000000; max depth 26)
[B3] 0.584/18273 [prior 0.167/42 amaf 0.577/20063 crit 0.285] h=0 c#=22 <f426a>
[B4] 0.609/15933 [prior 0.900/70 amaf 0.604/16872 crit 0.119] h=0 c#=21 <f434e>
[C2] 0.599/13077 [prior 0.125/56 amaf 0.595/14783 crit 0.246] h=0 c#=20 <f4381>
[D3] 0.630/12165 [prior 0.900/70 amaf 0.630/12224 crit 0.055] h=0 c#=19 <f4aa2>
[A3] 0.619/10907 [prior 0.125/56 amaf 0.619/11468 crit 0.287] h=0 c#=18 <f5223>

[594] best 0.609346 | seq B4 C2 D3 A3 | can B4(0.609) C2(0.526) D3(0.534) A1(0.169)
*** WINNER is B4 (2,4) with score 0.6093 (15933/18273:594/594 games), extra komi 0.000000
genmove in 0.10s (5885 games/s, 5885 games/s/thread)

65

playing move B4
Move: 5 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x X X |
4 | . X)O X . | 4 | x x x X X |
3 | . O X . . | 3 | , , X X X |
2 | | 2 | , , , x x |
1 | | 1 | , , , x x |
+-----------+ +-----------+

= B4

play w c2
Move: 6 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | x x x X X |
4 | . X O X . | 4 | x x x X X |
3 | . O X . . | 3 | , , X X X |
2 | . . O). . | 2 | , , , x x |
1 | | 1 | , , , x x |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 4.06
<pre-simulated 13077 games>
(UCT tree; root white; extra komi 0.000000; max depth 24)
[C2] 0.603/13718 [prior 0.125/56 amaf 0.595/14783 crit 0.244] h=0 c#=20 <f4381>
[D3] 0.635/12774 [prior 0.900/70 amaf 0.635/12833 crit 0.055] h=0 c#=19 <f4aa2>
[A3] 0.624/11393 [prior 0.125/56 amaf 0.624/12027 crit 0.288] h=0 c#=18 <f5223>

[642] best 0.634946 | seq D3 A3 D2 C1 | can D3(0.635) B2(0.277) A2(0.160) A1(0.040)
*** WINNER is D3 (4,3) with score 0.6349 (12774/13718:641/642 games), extra komi 0.000000
genmove in 0.10s (6377 games/s, 6377 games/s/thread)
playing move D3
Move: 7 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | X X X X X |
4 | . X O X . | 4 | X X X X X |
3 | . O X X). | 3 | x x X X X |
2 | . . O . . | 2 | x x x X X |
1 | | 1 | x x x X X |
+-----------+ +-----------+

= D3

play w b2
Move: 8 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | X X X X X |
4 | . X O X . | 4 | X X X X X |
3 | . O X X . | 3 | x x X X X |
2 | . O)O . . | 2 | x x x X X |
1 | | 1 | x x x X X |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 4.78
<pre-simulated 89 games>
(UCT tree; root white; extra komi 0.000000; max depth 22)
[B2] 0.730/733 [prior 0.167/42 amaf 0.616/8695 crit 0.260] h=0 c#=18 <f5220>
[644] best 0.796620 | seq D2 B5 C5 A4 | can D2(0.797) A3(0.642) A1(0.421) C5(0.787)
*** WINNER is D2 (4,2) with score 0.7966 (516/733:644/644 games), extra komi 0.000000
genmove in 0.10s (6395 games/s, 6395 games/s/thread)

66

playing move D2
Move: 9 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | X X X X X |
4 | . X O X . | 4 | X X X X X |
3 | . O X X . | 3 | x x X X X |
2 | . O O X). | 2 | x x x X X |
1 | | 1 | x x x X X |
+-----------+ +-----------+

= D2

play w a4
Move: 10 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | | 5 | X X X X X |
4 | O)X O X . | 4 | X X X X X |
3 | . O X X . | 3 | x x X X X |
2 | . O O X . | 2 | x x x X X |
1 | | 1 | x x x X X |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 3.58
<pre-simulated 27 games>
(UCT tree; root white; extra komi 0.000000; max depth 20)
[A4] 0.840/772 [prior 0.125/56 amaf 0.786/316 crit 0.104] h=0 c#=16 <f8ce3>
[745] best 0.876386 | seq B5 C5 D5 A3 | can B5(0.876) C5(0.739) A1(0.222) A3(0.192)
*** WINNER is B5 (2,5) with score 0.8764 (684/772:745/745 games), extra komi 0.000000
genmove in 0.10s (7401 games/s, 7401 games/s/thread)
playing move B5
Move: 11 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | . X). . . | 5 | X X X X X |
4 | O X O X . | 4 | X X X X X |
3 | . O X X . | 3 | X X X X X |
2 | . O O X . | 2 | X X X X X |
1 | | 1 | X X X X X |
+-----------+ +-----------+

= B5

play w d1
Move: 12 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | . X . . . | 5 | X X X X X |
4 | O X O X . | 4 | X X X X X |
3 | . O X X . | 3 | X X X X X |
2 | . O O X . | 2 | X X X X X |
1 | . . . O). | 1 | X X X X X |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 3.30
<pre-simulated 1 games>
(UCT tree; root white; extra komi 0.000000; max depth 18)
[D1] 0.864/694 [prior 0.167/42 amaf 0.897/382 crit 0.102] h=0 c#=14 <11a069>
[694] best 0.883252 | seq C1 B1 C5 C1 | can C1(0.883) A1(0.825) C5(0.790) D5(0.842)
*** WINNER is C1 (3,1) with score 0.8833 (548/694:693/694 games), extra komi 0.000000
genmove in 0.10s (6876 games/s, 6876 games/s/thread)

67

playing move C1
Move: 13 Komi: 24.0 Handicap: 0 Captures B: 0 W: 0

A B C D E A B C D E
+-----------+ +-----------+

5 | . X . . . | 5 | X X X X X |
4 | O X O X . | 4 | X X X X X |
3 | . O X X . | 3 | X X X X X |
2 | . O O X . | 2 | X X X X X |
1 | . . X)O . | 1 | X X X X X |
+-----------+ +-----------+

= C1

play w b1
Move: 14 Komi: 24.0 Handicap: 0 Captures B: 0 W: 1

A B C D E A B C D E
+-----------+ +-----------+

5 | . X . . . | 5 | X X X X X |
4 | O X O X . | 4 | X X X X X |
3 | . O X X . | 3 | X X X X X |
2 | . O O X . | 2 | X X X X X |
1 | . O). O . | 1 | X X X X X |
+-----------+ +-----------+

=

genmove b
desired 4.50, worst 5.00, clock [1] 0.00 + 5.00/1*1, lag 3.44
<pre-simulated 200 games>
(UCT tree; root white; extra komi 0.000000; max depth 16)
[B1] 0.901/996 [prior 0.062/112 amaf 0.876/478 crit 0.079] h=0 c#=12 <11ac9b>
[798] best 0.909070 | seq C5 pass A3 A2 | can C5(0.909) A2(0.876) A1(0.787) pass(0.000)
*** WINNER is C5 (3,5) with score 0.9091 (815/996:796/798 games), extra komi 0.000000
genmove in 0.10s (7923 games/s, 7923 games/s/thread)
playing move C5
Move: 15 Komi: 24.0 Handicap: 0 Captures B: 1 W: 1

A B C D E A B C D E
+-----------+ +-----------+

5 | . X X). . | 5 | X X X X X |
4 | O X . X . | 4 | X X X X X |
3 | . O X X . | 3 | X X X X X |
2 | . O O X . | 2 | X X X X X |
1 | . O . O . | 1 | X X X X X |
+-----------+ +-----------+

= C5

68

	Introduction
	Game of Go
	Rules
	Rulesets
	Basic Gameplay
	Computer Go

	Monte Carlo Tree Search
	Monte Carlo in Go
	Multi-armed Bandit Problem
	Bandit-based Game Tree Search and Upper Confidence Tree
	Simulation Policy
	Prior Values
	Rapid Action Value Estimation (RAVE)

	Information Sharing
	Situational Information Sharing
	Horizon Effect
	Local Value

	The Pachi Software
	The Pachi Framework
	Software Development
	General Architecture
	Program Interface
	Board Data Structure

	Play Testing
	Testing Infrastructure ``Autotest''

	Tree Search Policy
	Opening Book
	Prior Values
	Time Control
	Parallelization

	Simulation (Playout) Policy
	The Self-atari Problem

	Performance

	Dynamic Komi
	The Extreme Situation Problem
	Handicap Games

	The Dynamic Komi Technique
	Prior Work

	Linearly Decreasing Handicap Compensation
	Situational Compensation
	Situation Measure
	Komi Adjustment

	Performance Discussion

	Criticality-based Biasing
	Criticality Measure
	Using Criticality
	Performance Discussion

	Liberty Maps
	Collecting Ratings
	Using Ratings
	Performance Discussion

	Future Directions
	Information Sharing
	Dynamic Score-value Scaling
	Local Trees
	Tactical Solvers

	Other Research

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Pachi Source Code
	Sample Pachi Session

