Pachi: State of the Art Computer Go Program

Petr Baudis, Jean-loup Gailly
ACG13

November 2011

Introduction

Outline

@ Introduction

Introduction
e0

Computer Go and MCTS

Repeated X times
t{ Selection |——{ Expansion —— Simulation |—{ Backpropagation }j

The selection function is
applied recursively until
the end of the trec

One (or more) leaf nodes
are created

One simulated The resultof this game is
game isplayed backpropagated in the tree

(Chaslot, et al.: Parallel Monte Carlo Tree Search)

1T

Introduction
o]]

Our Work, This Presentation

A nice Go-playing software

“Engineering-focused Review” — particular high-performance
mix of published results

e New improvements — time control, criticality, dynamic komi

Parallelization and scalability

A plead to fellow researchers

The Pachi Software

Outline

@® The Pachi Software

The Pachi Software

@0

Pachi — The Software

e Artificial intelligence for the game of Go

e Fully open source (GPLv2), including
the infrastructure

e Regularly plays on the internet; KGS:
3 dan on cluster, 1 dan on single machine

o 1 thread weaker than Fuego, but scales
better (multi-threaded > Fuego)

e Support for distributed computation

e Support for some game analysis features
e Not that user friendly

The Pachi Software
oe

Pachi — The Software

About 17000 lines of richly comented C code

Modular, but not with too many abstraction layers

Easy to add new features, priors, heuristics

Well-tuned (maybe a bit overtuned), highly configurable

| Pachi Core (Main Loop, GTP) |

Game Engine

: Random | Distributed |- A
H [
H [
H | Monte Carlo | | uct |4-

Tree Policy

Tactical Library

Aux Library

Playout Policy
UCBIAMAF |

| Random Policy |

Moggy Policy

Feature Mix

Outline

© Feature Mix

Feature Mix
[Je]

Feature Mix

Most of the popular Go heuristics and techniques

RAVE, no UCB term, prior values for nodes

Rule-based playouts (like Mogo), 3 x 3 patterns

No progressive bias or unpruning

No probability distribution or large patterns in playouts

Feature Mix
oe

Feature Performance

Table: Elo performance of various prior value heuristics on 19 x 19.

Heuristic Low-end Mid-end High-end
w/o CFG distance prior —66 £ 32 —66+16 —121+16
w/o playout policy prior | —234+42 —196+16 —228+ 16
w/o Capture/escape rule | —563 £ 106 —700 —949
w/o 3 x 3 pattern rule —324+37 —447+£34 502436

Lessons learned: The opponent, available time
and board size matter

Improvements

Outline

O Improvements

Improvements
@00

Time Management

e Naive: Divide time to time-slots based on
expected game length

e Spend most time in the middle game (see Erica)

e Spend little on clear moves

e Spend long on moves with unclear followup
(multiple good candidates)

e Spend long on moves with unsettled followup
(good candidate has bad followups)

e Exact mechanism can be improved

e Low hanging fruit: 80 Elo improvement, and room for more!

Improvements
oeo

Dynamic Komi

e Increase evaluation precision in situations with extreme u

e Handicap games: Linear dynamic komi
Set komi to 555 - 8- h
Great for MCTS as black
e General: Situational dynamic komi
Set komi to maintain p € [0.4,0.5], use ratchet
Seemed promising, but scaling problems

e Current: “Linear adaptive dynamic komi”
Linear komi, but try to maintain p € [0.8,0.85]
Great in handicap, point-hungry in endgame

Improvements
ooe

Criticality

e Covariance of owning a point
and winning the game

e Caveats: Owning point # playing there;
how to integrate in MCTS?

e Previous results with progressive
unpruning and plain UCT

e Our approach: Add (C - 1.1 ngave) RAVE wins

e Seems promising, but scaling problems

(Coulom, R.: Criticality: a Monte-Carlo heuristic for Go programs

Parallelization

Outline

@ Parallelization

Scalability

e Single machine scales without sign of plateau
e Multiple machines are limited, at most +200 Elo
e Against Fuego 1.1, 500kP/move:

Elo

machines
threads/mach.

1 1 1 1 1 2 4 8 16 32 64 128

1 2 4 8 16 16 16 16 16 16 16 16
500
400
300 &

—-—% —4
200 //%
o |
- -
100 o . =t =
'/'//@;—%2' & :Q
0 P Sebiis
100 |
-200
-300 @ —— | machine, komi -22.5
400 W -— - 1 machine, komi -50.5
O — — n machines, komi -22.5, no virtual win

-500 [0 = = n machines, komi -50.5

r <& === n machines, 9x9
-600

156 313 625

125 250 500 1000 2000 4000 8000 16000 32000
playouts (thousands)

Parallelization
e0

Parallelization
o]]

Parallelization

Single machine: Lockless in-tree parallelization

Distributed: Root-level synchronization
(network is just 1 Gb/s Ethernet)

Virtual loss — 8 losses during descent for thread diversity

Virtual win — 30 or 5 wins for different tree nodes
on each machine

Pleads

Outline

@ Pleads

Pleads to the Researchers

Please avoid self-play experiments

Please use Elo instead of win percentages

Please investigate effect on scaling

500
800
400
600
400 300
200 i 200
L 2
@ B 5
200 100 /E]/-E]"B’- H
-400 N - 0 /EI/
0 O — vs. self n/2 sims .
-600) i
[d-—- vs. Fuego -100 O — vs. self 1 mach.
-800
15.6 31.3 62.5 125 250 500 200 O-—vs. Fuego
playouts (thousands) 2 4 8 16 32 64 128

machines

Conclusion

e Strong program, easy to use
for experiments

e Few interesting enhancements
inviting further work

e Simple but effective
parallelization, good scaling

e |t would be nice to improve
research reporting

	Introduction
	The Pachi Software
	Feature Mix
	Improvements
	Parallelization
	Pleads

